Category: Thunderblogs

Originally posted on

Sputtering Canyons, Part 3

Previously published at

In Part 1 of Sputtering Canyons, we discussed Arches National Monument, and evidence it was formed by a complex sputtering discharge process. That process involved a thermal spiking, barrier discharge in a layer of wet sandstone.

In Part 2, we looked at how charge and charge depletion disperses through rock by the combined mechanisms of current drift and diffusion. We looked at evidence of diffusion patterns in the landscape and evidence of mechanical shear caused by sputtering discharge.

In Part 3, we’ll look at some secondary effects from electrical deposition and sputtering on the Colorado Plateau. These features involve processes besides sputtering discharge and lightning bolts, however. These features also involved the winds of the storm.

In the primordial, plasma typhoon that layered the dome of the Colorado Plateau, winds were mobilized by the Earth’s electric field. Ionic species of opposite charge were pushed in opposite directions. Positive and negative species segregated into streams of unipolar winds that circled the Earth in bands moving alternate directions.

The electric field gradient was from pole to pole, or at least where the poles are now, so the winds circled north to south and south to north. The effect was the same as the counter-rotating bands of wind on Jupiter. Where they met was the anodic hot spot where super-volcanoes belched ash and flame, and the bowels of the Earth spilled forth molten rock.

Between the super-volcanic maw of Yellowstone and the strato-volcanic cones on the Mogollon Rim sits the Colorado Plateau, where the winds mixed in a plasma cyclone. The meeting of the unipolar winds was the earth-sized equivalent of the Great Red Spot on Jupiter – a sustained and violent storm, charged with electricity and bent by magnetic fields – a storm beyond any Biblical description.

Like Jupiter, the winds screamed at several hundred miles per hour. Mach effects, like standing shock waves and supersonic shear created extreme pressure, density and temperature differentials. Vast updrafts and downdrafts developed, tornadoes spun-up fifty- to one-hundred miles across, and all of it carried electric current.

Where shock waves form, electric current flows. This is known phenomena. The whole idea of an EMP weapon – an electromagnetic pulse that can knock out transformers and electronic systems, destroying the grid and communications, is based on this fact. Explode a nuclear bomb in the atmosphere and it will send out a shock wave. The shock wave carries the electromagnetic pulse that spikes current suddenly and wipes out electronics and power grids.

There is no battery in the nuclear bomb that creates the EMP. The EMP forms naturally in the shock wave. There are several effects that cause this. First, the shock wave is a sharp discontinuity in density. Where the density is higher, of course there is more matter, so a higher concentration of ambient ions are there, naturally raising charge density in the shock wave. The temperature is higher too, so that causes ionization in the shock wave. There is higher pressure, so particle collisions are more frequent, again ionizing the shock wave. And the bomb itself sends radiation with the shock wave.

So all these effects add up to a large electric current in the shock wave, and it is self amplifying. As ionization frees electrons to roam, they knock away more electrons in a runaway chain reaction. The process is related to the diffusion of charge discussed in Part 2, but in this case, the current diffusion is contained by the shock wave. The shock wave and electric pulse are coherent with each other.

Any place a supersonic wind hits an object, or is forced to change vector, or where it shears against winds moving at a different velocity, a shock wave forms. A projection, like a mountain, would create a standing shock wave that creased the wind, and generated current. In a plasma atmosphere, that current would grow very large.

Another feature of shock waves is they reflect. Like any wave, a light wave, an ocean wave; when it hits something, some of it’s energy echoes. When it does, it reflects in harmonic relationship to the wave that made it. Shock waves can reflect off each other, or align with each other and vibrate in harmonic resonance.

Every lightning bolt, every belch from a volcanic vent, sent new shock waves to reverberate through the air and echo from whatever they hit. Every sheet of current in them altered the electric field around it, and the atmosphere vibrated with charged waves, stiffened and resonating with feedback from the energy of the storm.

Some traveled at the speed of sound; while standing waves, reflected from stationary objects exposed to wind, stayed in place. They crossed, interfered and canceled each other. In the chaotic turbulence of the supersonic electric storm, shock waves literally patterned the atmosphere. Because the shock waves carry current, and magnetic fields result, the right hand rule forces waves into a cross-flow pattern with 90 degree angles.

Consider how ocean waves can form a coherent pattern in a cross-current sea, as shown in this photo from Ile de Re lighthouse off the coast of France.

Ile de Re cross-current – Photo by Michel Griffon

Shock waves formed a similar effect, only carrying electric current. As the layers of the dome built the Colorado Plateau, they scarred the land with these patterns.

Harmonic reflected shock wave patterns in Utah. Angles at 90 and 45 degrees.

This shock wave fracture pattern is almost universally found in the rim rock and cap rock of sputtered canyon walls, buttes and pinnacles. The fracturing takes the form of parallel joints, or checkerboard blocks. The blocks are sometimes deeply cut and look like broken teeth.

Electro-sonic shock cuts deeply in monolithic layers.

In other cases, they are straight, evenly spaced, parallel fissures. Razor thin shock waves created the fractures in the cap and rim rock as the dome was deposited, while it was still hot and plastic. Thermal contraction during cooling, and the tearing away of material during sputtering, broke the rocks along the shock induced fracture lines.

When nature uses a ruler – think electro-sonic shock.
Shock patterns change between layers deposited by successive winds that cause discontinuity in fissures.
Shock patterns capped by a layer of un-shocked sandstone.

The same effect is seen in completely different geologic formations – the windblown buttresses on mountain flanks. These images are from Comb Ridge, which is the southern rim of the Monument Valley dome, and San Rafael Reef at the southern rim of the San Rafael Swell. Both are dunes of triangular buttresses formed by the supersonic winds sucked into the storm that formed the domes. The shock waves from the supersonic winds that formed the dunes impressed themselves into the rock.

Comb Ridge checkerboard shock patterns.
Triangular flat-iron buttress in Comb Ridge with checkerboard shock pattern.
Flat-iron buttresses San Rafael Swell, Utah. Note shock patterns on two successive layers, upper left and foreground.

The shock wave currents shatter into harmonic reflections in ever smaller patterns. In formations where extremely high energy was available, such as the hardened plates of flat iron buttresses on the San Rafael Reef, the shock waves continued to shatter, reflect and reverberate down to the smallest scale.

This rock photographed from a flat iron buttress in Utah by Robert Hawthorne, during a field trip following the 2017 conference, shows parallel cuts in rock only a half inch apart.


This rock photographed by the author from another buttress in Utah during the 2016 field trip. It shows the squiggled fractures of a dissipating, shock induced current along the back edge of the buttress. These rilles only penetrate a fraction of an inch into the rock, and really defy any other explanation, unless rock eating worms cut these paths.


Another feature related to shock induced currents in linear, parallel formations, are something we’ll call, inverse dykes. A dyke is a vertical wall of rock. It can be free standing, or it can be embedded in a parent rock, like a quartz vein in granite. Quartz veins are caused by very high-current shock waves (which immediately raises the question, how does gold get in them thar veins? But that is a question for a future article.)

These dykes are made of minette, which is very high in potassium ratio, making the rock highly alkaline, or anionic. Which means it’s electrons were sucked out.

Minette dyke projects from Comb Ridge in background.
Minette dyke undulates across plains south of Comb Ridge.

They were made by shock wave currents – electro-sonic waves that scored across the land and fused the parent sands into walls of electro-chemically altered rock. They emanate from Comb Ridge on the south side of Monument Valley. And they are coherent with the triangular flat-iron buttresses of the Comb, which were formed by the same shock waves.

Blue lines trace minette dykes from Comb Ridge
The black dykes align with the Mach angle of the shock wave that formed the Comb’s flat irons.

Inverse dykes are similar wall-like features that were formed by currents that depleted the rock, shielding it from sputter. These upended pancake walls at Arches N.M., Utah were left standing as the lanes between them sputtered away, in the same fashion that preferential sputtering left mesas and pinnacles in the shadow of lightning strikes. Only for these, the diffusion of charge depletion was shaped by electro-sonic shock waves.

You can see they are layered, like the deposition layers of the mesas. Dykes don’t have deposition layers – they actually cut through deposition layers. Inverse dykes have deposition layers because they were part of the dome before it sputtered.

Inverse dykes of deposition layers undulate through sputtered canyons in Arches N.M.

Another phenomena related to the whole sputtering process is gaseous explosions. It primarily occurs during dome deposition, when hot sand rains down, accelerated by the electric field under the eye-wall of the storm, to be pressed into a layer on the dome.

After deposition, but while the rock is still hot and plastic, still popping and sizzling with excess charge, volatile mixtures accumulate in pockets. The pockets migrate through weak joints, dykes and veins in the rock, to explode near the surface, leaving holes from bubble bursts. Remember, the veins and joints are current carrying, shock induced features, so they dissipate heat and current as they cool.

Each hole can be associated with a fissure, or seam in the rock.
Tiny bubbles erupted along a fracture line, bottom left and center right.
Hand sized bubble bursts.

It’s very similar to the heat spiking bubbles that created Arches, N.M., but this occurs during dome deposition, not sputter. The gases are aided, or caused, by residual current in the rock escaping after it deposited.

It can leave perfect bubble imprints in dense, hardened rock. Look carefully at the bubble imprint lower left of the arch. It has a “Y” shaped ridge that is the precise symmetric pattern molded into the rock that three bubbles connected would present, because they have to equalize pressure across their membranes. This is not water erosion. This is bubble explosion.

Look for the Y-shaped star in the lower left-most bubble impression.
Interesting flash-over patterns in the broken rock face near the hole causes patina of ‘desert varnish’. Looks more like drool from the lip of the bubble burst.

They also explode outward in large jets, off-gassing the hot fresh mountain as it settled and cooled, leaving ‘yawning throats’ like this.

Blehhh … Pardon me!

The light at another time of day on the same ‘yawning throat’ in the San Rafael Reef, Utah shows the band of white crystalline dyke that the gasses migrated through. The ‘tonsils’ are a blade of the rock dyke.

A gas jet blew out along a dyke, which forms the cleft in the roof of the cavern.

This slot canyon in the San Rafael Reef was cut by a discharge of current and off-gassing. The discharge was powerful enough to cut the narrow canyon, implying it was an arc mode discharge.

Looking out the slot canyon.

The throat of the discharge is a hole about 3 feet in diameter. It is choked with an effluvia that followed the discharge and solidified as it dripped from the throat. There is a vertical dyke in the rock aligned with the hole, which can be seen as the white streak in the vee-notch above the hole.

Looking into the slot canyon to throat of discharge.

The throat is completely choked with the effluvia. The effluvia is black and textured much like minette, found in lightning generated features elsewhere in the region.

Throat of the discharge that cut the slot canyon plugged with solidified effluvia.

A runnel of the black effluvia drips from the throat, and the walls near the throat are splattered with a white substance.

The throat is plugged with solidified

Taste testing the white substance indicated an alkaline bitterness. Being in a National Park, samples could not be taken, so no further analysis is available.

Curious research assistant sniff tested and reported a ruff scent.

Off-gassing bubbles can be quite elaborate in volatile flows of foaming minerals. This carbonate rock fizzed like seltzer before it suddenly phase-changed to solid leaving exquisite bubble molds. Such sudden phase change implies an instantaneous electro-chemical process due to electrical discharge and recombination.

DSCI0350DSCI0349This image shows why off-gassing bubbles are part of deposition, not sputtering. The bubbles are in the untouched surface rock above, while the scalloped break in the rock (from a cupping spall caused by sputtering) has no holes. The holes were already there when the canyon was sputtered, and are only a near surface feature caused by off-gassing.

Bubble holes in native rock above spalled section occurred at deposition.

While theory and conclusions presented here are the sole opinion of the author, appreciation to the researchers who spent hot, grimy hours exploring Canyonlands to obtain photos and data is due. Researchers Larry White, Bruce Leybourne, David Orr Steve Cash and Ginger endured extreme heat, dangerous roads, treacherous heights and fine sand in their food, examining the wonders of Canyonlands, Utah for this article.

 Thank you.

Quick Tip

Please help support The Daily Plasma.


Sputtering Canyons, Part 2

Also published at

In Part 1 of Sputtering Canyons, we discussed Arches National Monument, and evidence it was formed by a complex sputtering discharge process. That process involved a thermal spiking, barrier discharge in a layer of wet sandstone.

In Part 2, we’ll take a broader look at some regions on the Colorado Plateau where similar sputtering discharge processes took place.

One of these is Monument Valley. Monument Valley was formed by sputtering discharge that almost completely etched a layer of the original dome away. What is left are the lonely pinnacles and buttes iconic to Western movies.

Monument Valley, Arizona

The reason these pinnacles and buttes are left standing, while the same layers of sandstone etched away around them, is due to preferential sputtering. Preferential sputtering is normally associated with sputtering an alloyed metal where one element in the alloy sputters more efficiently, eroding away faster than the other alloy metal.

In Monument Valley, the buttes and pinnacles left standing were portions of the dome that resisted sputtering because of a difference in charge density. The part of the dome that lifted away, did so when the wet layer – the icing in the layer cake – became a charged, hot ionized mud. A sheet of high charge density developed at the base of the mud with an attraction to the clouds above – and like an electromagnet picks up a junk car – the storm’s electric field lifted away the overburden to dissolve in electric winds.

The buttes and pinnacles are remnants that didn’t have the same charge in their wet layer, so they didn’t get pulled away by the electric field. The reason is: they were struck by lightning.

In the dark mode, drifting plasma current that causes sputtering, there is always the potential to spark. Manufacturers are careful to avoid this because it will flaw the finished surface. The pinnacles and buttes were parts of the dome where an arc, or many arcs struck and dissipated built-up charge. Instead, it altered the ground charge beneath the strike zone so the electric field couldn’t pull it away. Therefore, the buttes and pinnacles were preferentially – not sputtered.

In the parlance of the semiconductor industry, the charged layer was doped by the presence of water and minerals, which gave it an excess of electrons. When lightning struck, it depleted the charge and left an excess of “holes”, or the absence of electrons, which cancelled the attractive force of the sputtering discharge.

The evidence for this is manifold. To begin, consider the cap rock formations and spires found on buttes. Butte tops aren’t flat. They generally have something like a step pyramid, dome, or pinnacle on top, which is where lightning discharge was most intense.

Notice, in the images below, the pyramidal caps. The rock below the caps is darkened significantly more than adjacent stone. Not only is there black patina, but there is also more redness to the rock itself in streaks below the caps, with deep vertical fracturing. The charge depletion from lightning, and the subsequent recombination of the most severely depleted zones beneath where it struck, heated, shocked and hardened the rock more in these areas than in others.

DSCI0100DSCI0099The step pyramid structure, or terracing on canyon walls and buttes is another evidence of sputtering. Each sedimentary layer has different compositions of minerals and moisture, differentiating the dielectric property of each layer. The zone of charge depletion under lightning strikes spreads out in a conical diffusion pattern, but the cone is stepped, or terraced, because there is a step voltage across each dielectric layer.

Slide3Where there are towering cliffs with sheer vertical walls, it is because it is a monolithic layer with a consistent dielectric, causing a single large voltage step.


Where there is very hard rock, the edges are torn in chunky blocks. The flat, smooth breaks are not the result of millions of years of erosion of any type – wind, rain, ice, exfoliation, or flowing water. Any of those actions would have the opposite effect. The rocks have such smooth, flat faces, and sharp, angular, undercut edges because they were broken by mechanical shearing as the neighboring rock was ripped away.

DSCI0112Evidence of shearing is especially evident on monolithic walls. Sharp edged breaks are everywhere, leaving smooth, flat faces, hardly roughened, or rounded by any act of erosion.

Arching fissures are evidence of spalling, where the material tore away in flakes, cupped upward in the direction of shear. The arches often show concentric creases where flakes broke away in smaller sections deeper into the rock. One can see the same type of concentric flaking in broken glass.

In some places the canyon walls have the look of broken glass. In others it looks more like the broken end of a brick of hard cheese. Perhaps a well-aged Parmesan – stiff, dry and flaky, with a low shear strength.

Upward cupping flakes leave spall marks from shear.
Cupping spalls where rock flaked during shear.
Cupping Spalls
Cup shaped spallation
Cupped spallation with effluvia spilled from a fissure.
Big cupping spall inside a spall.

Besides cupping spalls, some surfaces show other evidence of stress fracturing due to shearing force.

2016-08-14 20.11.52
Stress fractures create sharp edged, wavy spalls where rock was torqued as it sheared away.

There is almost always a  thin layer of hardened rock at the interface of each terrace. This is where charge accumulated at the boundary layer of the strata, and the current hardened the charged sheet of rock more so than the surroundings.

Each dielectric layer spreads charge to the interface of its layer, driven by the electric field, to balance the voltage drop across the layer. So a charged sheet develops at the interface of each layer, and a step voltage to the next layer, which creates a surface tension at the interface, which makes the rock hard and dense. What is sandwiched between is often loosely consolidated.

DSCI0401Pinnacles in this region are of two types. Fulgarites, like the burnt shard of Agathla peak, are the direct result of lightning boiling up the crust of the earth in an electromagnetic blister. These types of pinnacles were discussed in Lightning Scarred Earth, Parts 1 and 2.

Agathla Peak in Monument Valley is a lightning blister.

Sandstone pinnacles are where lightning struck and altered the charge in the rock beneath it, creating an electrical ‘shadow’ to sputtering discharge. They are literally, the shadow of lightning strikes.

The footprint of a ‘brief’ strike, comparatively speaking, produces a narrow cone of protection. How the cone slopes and steps depends on properties of the rock layers and the electric field potential.

DSCI0101More sustained, or potent striking begins to diffuse charge depletion outward, forming nodes, or star like breakouts.

DSCI0418Still larger accumulation of strikes, diffuses charge further, and nodules break out into ‘wings’, or dykes of charge depleted rock.

DSCI0343DSCI0344DSCI0345The shadow footprint grows as arcing continues, elongating charge depleted zones into wedges with dykes growing out the tips and edges. It’s actually the beginning of a fractal dendrite, as lightning bombardment soaks charge from the ground, diffusing outward in branches and creating a depleted zone protected from sputtering. If the process continued before the surroundings sputtered away, the dendrite nodules would grow and branch in ever smaller fractal repetitions, like branches of a tree.

Molly's Castle1Little flat topGilson Butte1Wild Horse Butte3Wild Horse ButteAs adjacent rock is struck, the depleted zones connect into networks of wedges, ridges and pinnacles.

DSCI0204DSCF2097DSCF2098DSCF2096Generally, the pinnacles and buttes left on a dome are layered flat, but in some areas buttes display a dip, indicating horizontal winds influenced the deposition. Sputtering follows the voltage gradient, and so carves away from the lightning depleted zone in alignment with the strata because the voltage gradient follows the dielectric layers, cutting at 90º to the dip angle, leaving a straight-edged non-vertical wall. If eroded by conventional notions of wind, rain and mass wasting, the rock would obey gravity and erode a vertical wall. It is in details like this that prove electrical formation.

DSCI0347What we see in the stepped pyramids and terraced canyons is the result of two types of charge transport in a solid state matter. One is drift ionization caused by the external electric field of the storm, and the other is diffusion current caused by differences in charge density within the material of the dome.

Drift current is the flow of charge created by the external electric field of the storm, which primarily drives the ionized region downward, vertically through the layers of sandstone. Drift currents obey Ohm’s Law.

Diffusion current obeys Fick’s Law, which is related to Ohm’s Law, but accounts for variations in charge density that causes ionization to migrate from a region of high charge concentration, to a region of low concentration. No external electric field is needed for diffusion current, because the difference in charge concentrations creates a gradient between regions that results in a local electric field. This is the primary process that migrates charge horizontally – spreading out through each layer of sandstone.

What is carved away by sputtering leaves distinct scalloped edges in very dry, low conductivity material. The scalloping is a fractal phenomena of electrical diffusion that repeats the scallop shape in ever larger scallops.


Canyon rims are dry, course, and broken, with scalloped walls.


There is very little fallen, broken rock surrounding buttes and pinnacles.

In wetter environments this isn’t as apparent, or it may be totally absent, because water diffuses charge more evenly, creating smoother surfaces.

Water4archesWater3archesCompelling evidence the scalloped and terraced walls are a result of charge diffusion is shown in this image, where the archetype of all fractal shapes emerges – the Mandlebrodt Set.

Although it’s not a computer perfect rendition of the Mandlebrodt Set, it is nearly so. It’s a naturally generated fractal based on the same mathematical relationships of iterating three dimensional motion that governs electrical charge diffusion in solid state electronics.



The implication is obvious.  The shape of the canyon walls, the terracing, the fractal repetition of form – everything known about applied physics dictates this is the result of electrical current diffusion on a continent-scale semiconductor under the influence of a gigantic electric field. The physics is not only laboratory proven, it’s been used to make every semiconductor device ever manufactured.

In fact, geophysicists and even Hollywood CGI artists, simulate geologic forms like watersheds and river systems, canyons and mountains, using the fractal geometry of electrical diffusion. So, what is being described here has been acknowledged by consensus science. The scientific conclusion that these land forms are the result of electrical diffusion caused by an intense electric field influencing Earth’s crust, in an event in the manner Electric Universe theorists have described since Immanuel Velikovsky, is scientifically unavoidable.

Yet avoid it they do – consensus science, that is. To quote from a Wikipedia article on diffusion:

“Analytical and numerical models that solve the diffusion equation for different initial and boundary conditions have been popular for studying a wide variety of changes to the Earth’s surface. Diffusion has been used extensively in erosion studies of hill slope retreat, bluff erosion, fault scarp degradation, wave-cut terrace/shoreline retreat, alluvial channel incision, coastal shelf retreat, and delta pro-gradation. Although the Earth’s surface is not literally diffusing in many of these cases, the process of diffusion effectively mimics the holistic changes that occur over decades to millennia.”

Do you see what is going on here? Geophysics uses diffusion models to recreate Nature’s landscapes – they use the mathematics and physics of charge diffusion to do it, but don’t understand why – they think it’s just a coincidence. Rather than conclude from empirical data they have in hand, in proper scientific fashion, that electric current diffusion has a role in shaping the landscape, they conclude it’s just coincidence.

One hates to be critical of hard working geophysicists, but to have an empirically proven answer staring you in the face – and even be using it, with great success, as your model – and still ignore it in favor of a preferred narrative, is what a politician does, not a scientist. The idea that diffusion “mimics the holistic changes that occur over decades to millennia” is nothing less than absurd.

Diffusion is caused by charge transport from higher to lower concentrations. It’s an inside-out physical phenomena. It occurs at the atomic level, where charge diffuses from atom-to-atom, and then works its way out with secondary effects to produce the macro-fractal patterns we can see. Conventional erosive forces of water, wind and ice act on the land from the outside in, not from the inside out. They can’t possibly produce the kind of landscapes we actually see, and that is why they cannot be modeled with hydrodynamics, or any of the unverifiable effects of slow random forces of wind, ice and water acting over millions of years.

Scientists are forced to use electrical diffusion to model the obviously fractal and non-random forms on the landscape because it’s the only model that works, yet are so invested in scientific dogma they can’t see the discovery they made. It verifies everything I’ve said, so I appreciate they’ve already proven my case. But their notions violate physics, which is something they obviously don’t understand, so they call it a coincidence instead.

Fortunately, in EU we like to deal in truths. In Part 3, we’ll examine a few more examples of Sputtering Canyon evidence.

Sputtering Canyons, Part 1

Also published at

In summer of 2016, following the EU Conference in Phoenix, Arizona, EU Geology researchers visited Arches National Monument, and the deep reaches of Canyonlands, Utah, where the Green and Colorado Rivers channel through the Colorado Plateau.

Arches National Monument is an astonishing place for anyone interested in EU Geology. By conventional reckoning, the high desert plateau was carved into fantastical arches and hoodoos after millions of years of subtle water and wind erosion. To the EU researchers, however, it was evident the land was zapped, carved and seared by electrical storms that could have happened last year, so fresh looked the marks of evidence.

The Arches’ formation tells a story which explains one of the key phenomena that shaped the face of the planet. The phenomena is called sputtering discharge. So let’s take a look at what that is.

Arches National Monument, Utah

Sputtering discharge, as used in manufacturing, is a dark, to glow-mode current in plasma used to deposit thin films of material onto a substrate surface. It’s analogous to electroplating, or galvanic reaction in a fluid.

An electric field accelerates positive ions in plasma to collide with a source material, which breaks molecular bonds, eroding the source material. This is what the term “sputter” refers to –  the breaking away of particles which then drift in an electric field to coat the substrate. The source material is the cathode, and the substrate is the anode in the circuit. The material exchange is performed by electricity. Manufacturers often use magnetrons to shape and control the current, and improve material transport efficiency with external magnetic fields.

The point to be made, however, is that high voltage, low current in a plasma will erode, or etch away a cathodic surface and plate itself in layers on the anode. This is the process that shaped Canyonlands.

To fully understand these canyons, however, we must first understand domes, because the canyons are carved from a dome. The entire Colorado Plateau is a dome – or rather, a series of domes overlaying each other. The domes are composed of sedimentary layers of limestone and sandstone. The layers are stacked for the most part evenly and flat, like a layer cake.

This basic layer cake structure is capped with the Rocky Mountains on the East and carved into canyons on the West, while shot through with the Lichtenberg patterned, vertically cut gorges of the Colorado and Green Rivers.

The dome structure of the plateau, and the canyons carved through it, is primarily the result of a natural sputtering discharge process created during intense electrical storms. Of course, in this case, we are speaking about storms created in a past environment, when Earth’s electric field was amplified to the point the atmosphere ionized.

Imagine the atmosphere stirred into a maelstrom lit with streamers of glowing plasma. Where lightning crackled, not only in the sky, but across the land, and mountain tops glowed with coronal fire under swirling clouds of dusty plasma.

It would have been surreal. A place where streams of wind became electric currents. Where high and low pressure zones acted like battery terminals, and mountain tops became electrodes drawing machine gun lightning from the sky. Anything standing in the wind would have hissed and snapped with coronal fire.

Dust in the air would have acted strange, too, as the energy of free electrons collided and overpowered weaker atomic bonds, ionizing matter, causing it to act like a ferro-fluid under the influence of a magnet. Ionic species segregated, forming unipolar winds that tore past each other in opposite directions, creating shear zones of intense electrical discharge, and vortex winds of supersonic speed.

The inside of Earth would have been in turmoil as well. Hot magmas spewing from volcanic vents. Aquifers boiling. Explosive eruptions of steam from deep underground, pocking the landscape with holes. Even arcs would erupt – lightning from the ground – caused by buried pockets of charge where minerals and water ionized.

The winds, dust laden and electric, deposited the Colorado Plateau, plating a cake across the western half of North America in the same way semiconductor manufacturers layer circuitry onto silica wafers. The stratified layers are interspersed with magma flows, petrified forests, inland seas and dinosaur bone-yards of different ages that indicate it formed in a series of events that likely recurred over millions of years.

To create the Canyondlands, the voltage potential had to reverse, and eat away at landscape newly laid down by the storm. Under the electric field of an electrical storm, the surface of the earth becomes positively charged. It becomes the anode in the circuit where lightning strikes from the negative cloud base, and where rain falls. In primordial ionic storms like those that formed the plateau, rain didn’t fall, but silica did, as dust in the air fell and adhered in layers to the dome.

Inland seas, or layers washed over by tsunami generated by the storm itself, became covered over with more layers of dry overburden as the storm progressed. This left a moist layer, like icing in the center of the layer cake. This icing layer then ionized under intense bombardment from sputtering discharge in the eye of the storm, and created what is known as a barrier discharge in the moist layer beneath the ground.

Which brings us to Arches National Monument, proof that the canyons were carved by sputtering discharge, aided by barrier discharge, in a moist layer of the big cake.

This image tells most of the story. A band of rock that looks tortured and fluid, as if it were boiled mud when it solidified, sandwiched between smooth, more-or-less even layers of stone. The canyon floor is flat, which is surprising, if one accepts the consensus view that the canyons were made by water erosion. Water erosion leaves deep channels and vee-cut valleys, not flat floors.

‘Boiled Mud’ layer in Arches National Monument. The undulating bottom of the ‘boiled mud’, strata may be indication of tufting typical in plasma discharge.

This closer image (below) shows the fluidity of the layers. The overburden rock barely sinks into the sagging layer that turned plastic beneath it, because it was still solid. The plastic layer sagged, but didn’t compress, maintaining a consistent thickness. But on the bottom, the ‘boiled mud’ layer fluidized and squeezed like toothpaste.

What turned this layer fluid, and caused it to sag beneath a solid overburden, was electrical current. A barrier discharge current, where no gaseous atmosphere was present to ionize into plasma, but instead, the moisture and mineral in the layer ionized, generating a subsurface current.

Fluidity in the ‘boiled mud’ layer.

The moist layer ionized and charged species pooled into a plasma-like mud the electric field wanted to lift away. The electric currents boiled the moist layer and it began to foam and arc into the drier and electrically resistant overburden. When sputtering removed the surrounding overburden, pressure released and vapors expanded, making gas bubbles that raised the arches. Hardened pinnacles formed where mud boiled up in convective blossoms of hot ionization.

The arches rise from the ‘boiled mud’ layer.
Bulbous nodules rise from the ‘boiled mud’ layer like bubbles of foam.
Beneath the ‘boiled mud’ layer, strata returns to evenly structured layers.
A yawning arch rising from ‘boiled mud’ due to gas bubbles. The small hole to left is flattened against the hard overburden, as a bubble would, pressing up against a barrier.

One can see how the moist layer boiled and heaved, while currents arched and thrust upward, trying to break through the overburden rock. But in this area, it was unsuccessful. The traces of barrier discharge remain in the rock.  The empty, flat canyon floor, where the overburden and moist layer were carried away is where the discharge broke through to complete the circuit.

Arches is a display of etching, or Electric Discharge Machining (EDM) stopped in process. The wet layer was boiling off due to the current in it, and lifting away with the overburden when the process stopped, leaving these arches and hoodoos. It likely stopped when the sputtering glow current suddenly jumped to arc mode, and lightning struck, dissipating the charge built-up in the wet, ‘boiled mud’ layer.

Sputtering discharge is typically used in manufacturing to remove only micro-meters of material. The ion bombardment on the surface of cathode material only shallowly penetrates to break atomic, or molecular bonds and release particles. So how could such a process remove hundreds of feet of solid sandstone?

One reason is the strength of the electric field at work on the charged species. In the primordial storm we are discussing, the electric field would have been many billions, perhaps trillions of volts. The electromotive force of such a field applied to any large pool of charged species could lift a mountain.

The other reason is diffusion of charge through a thousand feet of dry, sandstone overburden, to ionize the wet layer. The section of the dome overlaying the wet layer acted as a solid state semiconductor, coherent with the intense electric field. Charge diffused through the silica layers in a manner to be discussed in more detail in Part Two of this article.

The wet, ionized layer then underwent a process called heat spike sputtering. Heat spike sputtering occurs when diffusing ionization causes secondary reactions. The secondary reactions occur in the wet layer, which is highly conductive and volatile. Currents heated the material and caused thermal liquifaction, melting and steam micro-explosions.

In Canyonlands, the wet layer ionized, inducing currents which heat spiked, discharging from the wet layer to the layer above. The arches and bubble-like pinnacles in Arches N.M. were created by heat spike sputtering and bubbles from micro-explosions as the ‘boiled mud’ layer ionized, vaporized, and discharged into the overburden.

This short film produced by diveflyfish on YouTube helps visualize the process of diffusion through rock and barrier discharge that caused the ‘boiled mud’ layer to boil. In it, Jim Hamman, the creator of diveflyfish, and an EU contributor, employs a high voltage Tesla circuit to generate current through a granite block. There are two things to note as you watch the film.

First, note how the flow of electricity diffuses through the entire granite block. Instead of channeling directly below the electrode in a narrow stream, it flows out the full footprint of the crystalline granite block. The external electric field of the circuit is diffusing charge through the granite as in a solid-state body.

In the tense electric field surrounding the eye of the hyper-storm that etched the canyons, currents also diffused through the dome matrix in this way, ultimately ripping out mountains of earth in the blink of an eye as currents boiled and liquified the wet matrix below, similar to the plasma tornadoes swirling in the gaps between the electrodes and the granite.

Second, note the plasma tornadoes that bridge the gap between the block and electrode. They are not in bright arc mode, but are filaments in glow mode. The plasma tornado currents are in the air gap, where the air has ionized to plasma. In the Arches, there was no air gap between the ionizing wet layer and the overburden, so the discharge was a barrier discharge coming from the ‘boiled mud’ layer. The currents flowed around the boiling, bubbling, foaming heat spikes to fuse and harden the less conductive overburden in it’s pattern of arches and pinnacles.

Jim’s experiment was intended to look for piezoelectric amplification of the current, but isn’t instrumented to acquire a measurement in this video. It does however demonstrate diffusion of current through granite, which demonstrates how ground currents can diffuse in natural rock. Towards the end of the clip, arcing begins where hot spots begin to eat through the granite, collecting the current into a single path, and starving the diffusion currents.

There are many other evidences of sputtering discharge in the Utah Canyonlands. In part 2 of Sputtering Canyons, we’ll examine some more.

Thank you.

Lightning Scarred Earth, Part 2

Originally published by

In Part 1 of Lightning Scarred Earth, Shiprock was presented as an example of a pinnacle created by lightning. Fulgarites are created when lightning strikes, and current penetrates the ground, leaving a hollow tube of glassy, fused material behind. Current from the lightning vaporizes and extracts material in it’s path, while it’s heat vitrifies the surrounding soil, leaving behind glassy tubes.

Based on it’s features, it’s proposed that Shiprock is a standing fulgarite, created by lightning so powerful and sustained that the material began to recombine in the current as it was pulled from the ground, leaving behind a pinnacle of fused material instead of a hollow tube. Once material recombines, it’s no longer charged and attracted to the lightning channel, so is left behind, it’s ionic makeup altered by the current and heat.

Dark minette spills from the center of Shiprock, surrounded by a broken sheath of lighter, distinctly different rock.

The morphology of Shiprock displays this very well, with columns of fused rock, surrounding an inner core of minette – ionically altered material pulled from the ground by the flow of current. Surrounding the pinnacle are minette dykes radiating away in a star pattern.

Kayenta Lightning13
Dykes radiate from Shiprock in a star pattern

Minette is high in potassium and low in silica content. It contains high volumes of orthoclase and biotite. Both are minerals with high metal content, such as potassium, iron and sodium.

Silica dioxide will readily exchange oxygen with metals, such as those found in the orthoclase and biotite, when sufficient heat is applied. The prevalence of potassium and other metals crystallized in minette, and its under-saturation of silica, is evidence of the reduction taking place as it was formed.

This suggests that the lightning forming it was positive lightning, which is the type of powerful lightning seen striking from the stratospheric anvil clouds in thunderstorms. Electrons and negative ions in the ground, pulled out by the positively charged lightning, left behind a concentration of positively charged material which was not attracted and drawn away. The dykes and inner core of the pinnacle show the path of the current being drawn to the lightning discharge.

Delicate lichtenberg discharge surrounds Shiprock

Following the lightning strike that formed the pinnacle, the area was left with a net positive charge, which attracted a secondary ground discharge, or arc blast that emanated from a different discharge process. This secondary discharge will be explored more in the future, but it’s worth mentioning now because it left a magnificent Lichtenberg pattern across the ground, unique to the area immediately surrounding Shiprock.

The next series of images shows the evolution in magnitude of this type of formation. These are all examples from the four corners region in Northern Arizona.

First, when lightning similar in magnitude to what we see today strikes the ground, it sweeps surrounding surface sand to it, drawing it to the lightning channel and creating a shallow crater. Examples of this were shown in Part 1. where lightning created small craters with a pile of sand left behind in a small cone.


Again, these are not anthills, although they could easily be mistaken for them on cursory examination. There are no ants, no opening in the mound, and it’s dusted over the top with sand fused into pebbles. The pebbles rest in a thin layer over the top, like sprinkles on an ice cream cone. Beneath is powder fine sand.

The top layer was formed from sand pulled into the lightning channel and fused into pebbles by heat, then dropped back on top of the mound when the flame extinguished. They bear the same character as the minette material in Shiprock’s center and dyke formations. All of the mound material and surrounding sand measures high in pH.

The following images show buttes at various stages of growth. The first exhibits an up-welling of minette. The second and third images show the broken remains of the sheath, and the last image shows the dark minette partially surrounded by the lighter rock sheath.


Another type of lightning formed butte has a different morphology that appears to be created by negative cloud to ground lightning – the type of lightning that emanates from the belly of thunderstorms.

Because the Earth is generally a negatively charged body, at least in terms of ground charge, it forms a double layer at the interface with the atmosphere. When a thunderstorm forms, and the electric field strengthens, positively charged ions in the atmospheric zone of the double layer collect above the ground beneath the storm.

Before negative cloud-to-ground lightning strikes, it pulls this material into positive ionic streamers that reach up to connect with the electron avalanche produced by the cloud. When the streamer and avalanche leader connect, a circuit is completed and current discharges through the channel, electrons flowing to ground and positive ions flowing up to the clouds.

The magnetic field created by the current wraps tightly around the channel, compressing it to a narrow path in what is known as a ‘Z pinch’. ‘Z pinch’ has been demonstrated in the lab by simply passing current through an aluminum can, with the electrodes connected at the top and bottom. The resulting pinch crushes the can into an hourglass shape.

In the huge primordial storms that we theorize occurred in Earth’s past, such lightning and pinch effects resulted in huge amounts of positive ionic material being swept to the lightning channel with such extreme force it sometimes created supersonic winds.

Fulgamites formed by sustained, giant cloud-to-ground arcs display the effects of discharging current, accumulation of ionic dust, z-pinch and the supersonic winds and shock waves they produced. The images presented show the progression of such an event.

First, the strike forms a raised platform, with a shallow crater in the center where the lightning created an electrode spot. The rim of the crater is material swept inward by ionic winds and fused. There is a road cutting through the crater in the first image to give some perspective how large the feature is. These images are from Arizona, near Pastora Mountain.


A more sustained strike begins to accumulate neutralizing material on the spot, forming a flat-topped dome, like a pancake. As the material accumulates, the pancake grows to a mesa type structure, held together in a round form by the magnetic pinch.


In the next phase of growth, the mesa grows taller and the inflow winds begin to reach mach speeds, creating shock waves that mold the rim material into triangular standing wave forms. A detailed discussion of this shock wave and the triangular buttress formations they create is presented more fully in previous articles on Arc Blast.

Mt Hillers, Utah – Hard rock buttresses form a nearly perfect circle around the base from in-flowing supersonic winds.
Mt. Hillers, ringed by shock-formed buttresses, lies in a complex of lightning formed mountains. Less developed craters and domes can be seen behind it.

As neutralized material builds, the anode spot the lightning connects with is at the top of the mesa, and rises with it. The strength of the pinch narrows the top forming a cone, and new regions of windblown, fused and shock-shaped buttresses form rims outside the older rim.

Left to right, the conical head of a fulgamite and concentric rows of granite buttresses. The dark vegetation band below rocky buttresses shows consistent angle of dip created by wind blown deposition – Buster Mountain, southern Arizona

The difference between lightning formed pinnacles like Shiprock, and the broad mountain forms shown in these images, seems to be polarity in the lightning. This interpretation is preliminary, but it appears that positive lightning burrows into the ground to connect with negative ionic matter beneath the surface, whereas negative lightning attracts surface winds and dust to it.

Positive lightning raises a narrow pinnacle of negatively charged material that boils up from the ground, with dykes which display the current path through the subsurface. Not much material is drawn to it from the surroundings, except for the sheath of rock it forms around it.

Negative lightning connects with pools and streamers of positively charged matter at the surface, and pulls huge amounts of airborne dust to create a dome with hardened, buttressed rims.


In both cases, mountains can form around them due to ambient winds and blowing dust. Positive arc fulgamites can form monoclines along the dykes, if ambient, supersonic winds strike them to create a standing wave, where dust piles into long, linear ranges of triangular wave forms.

Monoclines form against fulgarite dykes – San Rafael Reef, Utah
Blue dots and lines denote fulgurites and dykes in Comb Ridge monocline, Arizona
Fulgurite (right pinnacle) and dykes walls behind Comb Ridge monocline.

The last images above, taken at Comb Ridge monocline in northern Arizona, shows where fulgamites and dykes are exposed in the monocline. These protrusions created a shock wave in mach speed ambient winds that formed a linear standing wave, against which the monocline was formed like a dune, as blowing dust accumulated. There are several monoclines on the Colorado Plateau that exhibit the same, or similar features.

Negative arc fulgamites create their own winds, bringing dust to pile against them from all directions, and if powerful enough, form standing shock waves that generate buttresses in a ring around the base.

Fulgamite peak in Utah, near Capitol Reef.
Fulgamite forms central peak in Utah Mountains, near Capitol Reef.
Circular fulgamite features in Utah mountain range. Note the raised rims around the features built by inward flowing winds.
Circular fulgamite features in and around Pastora Mt., Arizona.

The circular craters and mesas in the images were formed by lightning, while the mountain was expanded by wind borne dust accumulating around them. There are several examples of mountains with these features in the Four Corners region.

Mountains are a misunderstood feature of the planet. Geological concepts are based on rocks forming deep in Earth’s crust and being exposed by erosion and tectonic motions, entailing, of course, hundreds of millions of years. It’s a very complex process that has not, and cannot be witnessed, or confirmed by experiment.

Mountain formation by wind and electric discharge, however, can be witnessed in nature. Sand dunes are a prime example. Mountains can also be produced in laboratories. So can rock. It happens when slag is produced from welding, ore and metal processing, or from chemical reactions like cement. Atomic and molecular bonding is an electrical process – the exchange and sharing of electrons.

Electricity and wind is a far more plausible mechanism for mountain building than what is proposed by the consensus theories. Especially since the actions of wind and lightning that formed mountains on Earth can be seen in any thunderstorm. One only needs to extrapolate the forces and energies involved to what they would have been when Earth was in a much stronger electrical environment.

Amplify the electric field of a thunderstorm by orders of magnitude, and it will produce an ionized atmosphere, screaming with supersonic winds, ionized dust, and incredible discharges of lightning that dwarf what we experience today. For examples, we need only to look at our neighboring planets. These conditions exist on Jupiter, Saturn and Venus. Why would Earth be any different.

Thank you.

Quick Tip

Please help support The Daily Plasma.


Tornado – The Electric Model

Re-posted courtesy of

Previously, in Nature’s Electrode, we looked at an Electric Earth model for lightning genesis driven by a plasma corona formed from condensing and freezing water vapor in the central updraft of the thunderhead. We also looked at the thunderstorm itself, and an electrical model for the circuit that drives it, in The Summer Thermopile. Now let’s consider the most dramatic weather event of all, the tornado, and how these massively destructive whirlwinds are also formed by a plasma corona in a thunderstorm.

For air to become plasma and carry current, the air has to be partially ionized. A plasma state can be defined by “plasma density” – the number of free electrons per unit volume, and the “degree of ionization” – the proportion of atoms ionized by loss, or gain of an electron.

A gas with as little as 1% of the particles ionized is a plasma, responding to magnetic fields and displaying high electrical conductivity. A partially ionized plasma is often referred to as a “cold plasma”, and highly ionized plasma is referred to as “hot”. Discharge from a corona is predominately a cold, dark current, invisible to the eye.

Cloud-to-ground arcs come from high charge density regions of the corona, surrounding the central updraft where current from the updraft generates ions. Ground charge builds below this region in response, and the electric field strengthens, magnifying and focusing electron avalanche the way a lens focuses light, into a continuous plasma channel. When the channel connects with ground and discharges a hot current, it wraps tightly in it’s own magnetic field, in what is called a ‘”Z” pinch’.

Moving away from this self ionizing/high electromagnetic field region of the corona, free electrons spit at the ground, but lack the energy and focus to avalanche all the way, creating instead a mobile cloud of ionized gas that follows the field gradient to ground, generating a dark current. The current is said to “drift” in this region, yet the electric field still organizes the drifting ions into a columnar channel.


In the image, the center of the coronal discharge is focused and imparts more energy to cascading electrons, creating the potential for arcs (see the current density distribution at the bottom of the diagram). Closer to the outer edge of the corona, weaker reactions manifest in transfer of momentum and heat with ions and neutrals. Downdraft and down-burst winds are the common result.


Momentum transfer manifests as downdraft winds by the process of electrokinesis, which is neutral species attracted to, and mobilized by, the charged particles zooming down the electric field gradient towards ground, creating an ‘electric wind’ that moves the bulk fluid along the electric field gradient.

If the ionization rate exceeds the rate of recombination, the plasma will build a streamer, a tendril of plasma from cloud to earth, pushing a plasma generating ionization region ahead of it, and drawing behind it a cloud of cold plasma. When this plasma hits ground, a cathode spot is produced, and the electromagnetic field redistributes along the plasma channel, focusing it.

The cathode spot on the ground  draws positive charge to it, dragging neutrals, again by electrokinesis, and creating the in-flowing winds that generate a ground vortex. This is the moment of tornado touchdown, as charged air and dust flow in and spiral upwards around the invisible plasma tendril.

The action is analogous to the lightning bolt leader and positive ground streamer that meet to create a channel for lightning discharge – two seemingly separate events, organized into one coherent structure by the electric field.

The plasma current thus created is a complete circuit to ground, only it’s partially ionized, diffused with predominately neutral species. Its energy and charge densities are too low to make an arc, so it forms a complex plasma channel called a Marklund Convection.

Marklund convection, showing diffusion of neutral air away from current tendril (blue arrows) creating low pressure. Plasma drift (green arrows) draw positive ions at ground level, creating inflowing winds to the point of contact with the plate electrode.

Rotation is a natural consequence of the circuit. Neutral air is diffused away from the Marklund current creating low pressure. But positive ions near the ground drag air, dust and debris to the ground contact and create in-flowing winds and a sudden change in direction up, and around the tendril. The meeting of these opposing winds is the ground vortex.

The current flow in the plasma will itself rotate, taking a helical path as it interacts with the magnetic field around it. The appearance of a tornado is precisely the expected morphology of a Marklund current. Increasing current flow “spins up” the tornado.

It forms an inner, spiraling, negative current to ground and an outer spiral of positive ionic wind flowing up to the source of coronal discharge in the cloud.


Because the tornado is a cold, partial plasma current exchanging charge between ground and atmosphere, it can be pushed by winds to create a slanted, or kinked path, and travel away from it’s point of origin.




There are several tell-tale signs the electric model of tornado genesis is correct.

Wall clouds…

One evidence is the wall cloud. Wall clouds form before a tornado in a typical storm evolution. It develops rotation and sometimes its clouds can be seen to rise and fall in an agitated manner. Puffs of low level clouds are drawn to it below the main cloud base.

The wall cloud is a physical expression of the corona. As the corona gathers charge, it creates a lowering, vertical wall of cloud as ionization condenses moisture in the column of air below that is incongruous to the general slant and motion of the storm clouds and in-flowing winds. It’s visual evidence of a region where the electric field is strengthening and the corona is increasing charge density prior to establishing a current to ground with a tornado.

lakeviewThe funnel cloud doesn’t always emerge from the center of the wall cloud. The funnel often appears along the edges of the wall cloud, or from the surrounding clouds.

This is because the region of charge density is mobile and can wander. They can also multiply, creating several tornadoes.

Characteristic of parallel currents, multiple tornadoes stand off from each other as if repulsed like two parallel wires flowing current in the same direction. Rare occasions when tornadoes seem to merge, it may be that one simply dies as the other steals it’s current.

The sudden disappearance and reappearance of tornadoes, and the reported skipping, or lifting they seem to portray, are likely caused by pulsating current from an unstable coronal discharge that weakens until recombination steals the current, and then revives when the rate of ionization again overcomes the rate of recombination and a complete circuit to ground is reestablished.

Tornadoes and lightning…

As discussed in Nature’s Electrode and The Summer Thermopile, lightning frequency is highest around the central updraft and increases in frequency with the strength of the updraft wind. When a tornado forms, cloud-to-ground lightning frequency diminishes until the tornado dies, and then picks-up again to the previous baseline. It’s also found that positive lightning is more common in tornadic storms.

The latter is evidence the corona in the storm’s anvil, that spits positive lightning, is instrumental in creating the electric field strength necessary for a tornado. It amplifies the field strength affecting the negative corona in the cloud base, below, creating conditions necessary for tornadoes.

The fact that cloud-to-ground lightning dissipates as a tornado spins-up is evidence the corona is part of a coherent electric circuit, where current in one region robs current from another.


Sights, smells and sounds…

Storms that produce tornadoes are often characterized by a greenish tint in the clouds. The green tint is excused by many scientists as a reflection of city lights. While their search for green-tinted city lights continues, the dim glow of a coronal discharge internal to the cloud formation explains the green tint.

Luminosity in the clouds and the funnel are also reported. Consensus science blames this on misidentified sources of light from lightning, city lights, or flashes from downed power lines. Some of it no doubt is, but some of it is likely the effect of coronal discharge. Lightning flashes don’t make a continuous glow.

Ionized oxygen  can recombine to produce ozone, which has a distinctive chlorine-like “gassy smell”. This smell is often reported by witnesses.

220px-tornado_infrasound_sourcesSo are hissing sounds from the base of the funnel. Funnel clouds and small tornadoes are known to produce harmonic sounds of whistling, whining, humming, or buzzing bees. As ozone is liberated it produces such a hissing sound.

Energized transmission lines subject to over-voltage conditions produce all of these same effects: faint luminescent glow, ozone production and it’s accompanying hiss and smell. It’s cause is coronal discharge.

Tornadoes also produce identifiable infra-sound. It’s inaudible to the human ear, but it can be felt. It will produce nausea, agitation and body heat, effects often felt in the presence of tornadoes – although fear might do that, too.

Lightning has been reported internal to the funnel. These may be a form of cloud-to-cloud discharge, between the counter-flowing positive and negative currents in the Marklund convection.

Tornadoes are seen to have an inner and outer column, although this is disputed by consensus scientists as an illusion. The inner column, however, is seen if the outer dusty sheath dissipates, or is blown away. This is consistent with the double wall formed in a Marklund convection.

Double wall – an inner tube with an outer sheath of dust can be seen.

Tornadoes emit on the electromagnetic spectrum as measured by researchers. Tornadoes emit sferics, the same type of broadband radio noise lightning discharges produce.

Non-super-cell tornadoes…

220px-great_lakes_waterspoutsSo what if there is no super-cell? How do all the other vortex phenomena form – landspouts, waterspouts, gustnadoes and dust devils, and how are they related.

By the same mechanism proposed here for the super-cell tornado, only in lower energy form.

Funnel clouds, which never result in a touchdown are a tendril of Marklund convection current that begins to recombine faster than it generates ions, and it dies.

Landspouts, gustnadoes and waterspouts all begin with a surface disturbance – a vortex without a cloud, or at least not one showing a wall cloud, or rotation. These are instances of stronger ionic accumulation at ground level, creating a strong ground vortex first in easily ionized sand, or water, whereas the corona above is weak and diffuse.


This comports with observations of twisters of all kinds, including dust devils and spouts which are seen to begin on the ground. Or water – in the case of a waterspout – where documented evolution begins with a mysterious “dark spot” on the water.


Thunderstorms, lightning and tornadoes – all products of the same weather event – can be perfectly modeled electrically. Electromagnetic fields, ionization, current, capacitance and induction rule nature. It is evident in Nature’s every aspect, because the fractal, self-same patterns always appear.

Consensus science adheres to a gravity model that ignores this fundamental causation and instead feverishly dissects the emergent thermodynamic and fluid dynamic interactions looking for answers, like trying to tell time by taking apart the clock. They continually come up short, as a result.

The Summer Thermopile

Re-posted courtesy of

In a previous Thunderblog, we talked about Nature’s Electrode… how a cold plasma corona is the proper electronic model for lightning genesis, and how mechanisms for ionization in a thunderstorm work.

Now let’s take in the bigger picture to get a more coherent look at a thunderstorm.


The proper electrical analogy for a super-cell storm is a thermopile.

A thermopile is an electrical circuit that you’ve probably seen in use. Ice coolers made for cars that plug into the cigarette lighter are one example.

Thermocouple_circuit_Ktype_including_voltmeter_temperature.svgThermo-couples are an instrument to measure temperature used in your car and home air conditioning and heating units.

The thermo-couple is a circuit that couldn’t be simpler. All it takes is two, or more wires of different conductivity connected in series. The effect can also be made with solid state materials similar to solar cells.

Current generation from thermo-electric effect.

The different electrical properties of the dissimilar wires create a temperature difference – one conductor chills and the other heats up  in the presence of current; or vice versa, current is produced by a temperature difference.

Now, hold that thought for a moment – current is produced by a temperature difference. Temperature is wholly a consequence of electrodynamics. There are all kinds of complexities about temperature and radiation and how it’s transported by conduction and convection, but the bottom line is electricity.

There are three mathematical relationships that describe the conversion of current to heat and heat to current in terms of a circuit, called the Seebeck, Peltier and Thomson effects. The details aren’t needed for this discussion because they describe different conditions and aspects of the same thing. Current produces heat, and heat produces current, provided the right dissimilar materials are properly arranged in the circuit.

The relevance to a thunderhead is in the central updraft core of the storm, which becomes a thermo-couple circuit. It’s a flow of wind bearing ionic matter which produces a current.

In Nature’s  Electrode, we discussed several mechanisms for how ions form a cold plasma corona by virtue of field emissions in a strong electric field. The updraft rapidly chills as it rises, becoming more saturated with condensate and ionization. It also shrinks. The central updraft column gets denser as it rises, so the column has to shrink in volume, and this causes it to speed-up.

250px-ShelfcloudThe many changes to the state of the air in the updraft changes the conductivity of the air in the column. The updraft column is electrically no different than a wire of changing conductivity, which in the presence of current, will exhibit a thermo-electric effect.

It won’t maybe do it, it’s gonna do it. It has to do it. In the presence of a huge electric field, a wet, surface-wind rising into the cold dry stratosphere is going to cause a whopper electric current. If anyone doubts this, go look at a thunderstorm.

When there is a sequence of several conductors of different conductivity in series, the thermo-electric effect can be amplified by adding more junctions. This is called a thermopile. It’s several thermo-couples connected together.

Thermopile Circuit

A super-cell thunderstorm is a thermopile. It has more than one ionization event and each one changes the column’s conductivity in a feedback that increases current and amplifies ionization.

The rising central updraft ionizes where the moisture is saturating and condensing, or freezing, at specific temperature layers. All around the column is a shear zone between it and the surrounding air, and this is where the ions go to collect. The shear zone is an interface – a dielectric barrier that attracts charged species to it.

Again, let’s refer back to our previous discussion of Nature’s Electrode: we discussed how ionization occurs at different altitudes as the moisture in the air condenses, supersaturates and freezes.

It’s been known since the beginning of the twentieth century, that a fast-moving charged particle will cause sudden condensation of water along its path. In 1911, Charles Wilson used this principle to devise the cloud chamber so he could photograph the tracks of  fast-moving electrons.

In 2007, Henrik Svensmark published a theory on galactic cosmic ray influence on cloud formation, and later demonstrated his theory in a cloud chamber at Cern, demonstrating certain cloud formations are catalyzed by cosmic rays ionizing the atmosphere.

These are examples of ionization causing condensation. Now let’s consider condensation causing ionization.

Water vapor condensing into droplets self-ionize into cations and anions. In the huge electric field of a thunderstorm, the ions are torn apart as they form, filling the rising air with charged species. This condensation event forms the first corona, a negative corona around the central updraft with charge density concentrated in the lower clouds where condensation first occurs.

Above 1% volume of charged species, the air will exhibit the dynamics of a plasma. Plasma acts as a coherent fluid organized by the electromagnetic field. It seeks balance in an equi-potential layer transverse to the electric field, so it spills out from the walls of the column and forms ‘sheets’, which is what is detected in thunderstorms: ‘sheets’ of charged species.

noaaelectrical-charge-in-storm-cloudsThey actually have more complex geometry than a ‘sheet’. They organize into plasma coronas that actively spit out electrons and ions in channeled currents. Coronas have a geometry and produce effects that depend on the polarity of the charged species mix.

The channels of discharge they create explain every aspect of  a super-cell thunderstorms. Coronas explain rain, downdrafts, tornadoes and lightning.  They explain cloud-to-ground lightning and positive lightning; intra-cloud lightning and inter-cloud lightning. They explain sprites, elves and gnomes – electrical discharges to space that are the Earth’s equivalent to a solar flare, caused by the same thing – corona. They explain the shape of wall clouds, beaver-tails, the meso-cyclone and anvil.


Because this is the electric model of a thunderstorm it’s closer to the truth. It’s not that convection doesn’t occur, it does. But convection is heat transfer and that is fundamentally electric, like everything else. Pressure and temperature are intimately related as physical expressions of electrodynamics.

290px-Chaparral_Supercell_2The anvil top is another coronal expression where the water freezes to ice. The ionic mix here is different and a positive corona is the result. It has a different shape, being a broad diameter and less dense in terms of charge density.

The coronas are the thermopile’s different current junctions, where charge bleeds out of the central updraft column, just as it will from a power line if the insulation is damaged. Atmosphere is a leaky insulator. It’s the strength of the electromagnetic field that gives the storm it’s shape.

And once the motor gets started – the conveyor belt of wet wind in the updraft keeps rev’ing as charge density builds. The rain curtain and downdraft are the same current looping and dumping hydrolyzed charge in the form of rain at the exhaust of the updraft.

It’s a looping current from ground to atmosphere, and back to ground, in a continuously changing conductive path through several temperature regimes – in other words, it’s a thermopile circuit.

And so builds the strength of the corona, until it spits electrons that avalanche into lightning bolts. If conditions are right, a charged corona will lower towards the ground, abating it’s lightning to send downwards a twisting tendril of plasma, while stirring ground winds below into a vortex. A tornado is born of a corona.

Slide2In the diagram, a point electrode generates a corona opposed to a plate electrode connected to ground, with a gap in between. This is a similar circuit to a storm except the corona in the clouds would not have the geometry of a point electrode, but likely a flattened toroidal shape.

In the region in the gap labelled drift region, channels of current are created based on the charge density of the region of corona from which it radiates. The outer edges where charge density and electric field tension is lowest, the corona can’t make lightning, but it still spits electrons that drift towards ground. The drift region of a corona creates unipolar winds as drifting electrons drag ions and neutral matter along by electrokinesis.

Slide3Sudden and intense down-bursts and mammatus clouds are highly mysterious to atmospheric scientists and they attribute them to density bombs – pockets of dense heavy air that rapidly sink from the clouds. These violent downdrafts will slap airliners from the sky. They aren’t density bombs – they are unipolar winds and ionizing tufts from the anvil corona.


The entire morphology of a thunderstorm is explained by a thermopile circuit with leaky insulation. But that isn’t all it is. In Electric Earth Theory, there is a more significant meaning.

The looping circuit of a super-cell is a weak form of electrical expression known as a coronal loop. Coronal loops are the result of the corona’s themselves moving relative to the plate electrode. The differential movement creates an offset between the center of charge density in the sky versus the center of charge density on the ground, distorting the electric field. It’s a dog chasing a cat that can never catch-up – negative chasing positive polarity in a wave.


The result is it bends the current into a loop. It goes up in a wind born discharge of current and comes down, energy expended and recombined into rain. If charge builds enough, though, the loop breaks out into a fully realized discharge. The current breaks through the dielectric barrier of the atmosphere to splash charge into space. On the Sun we call them Solar Flares, and Coronal Mass Ejections. On Earth we call them Sprites, Elves and Gnomes.

So, here we are in the world of plasma. Double layers, Alfven waves, z-pinches and corona – it happens in our everyday lives as much as it does on the surface of the Sun – because it’s all the same thing.

Prominence_(PSF)So too, we have symmetry. Not the artificial symmetry of mathematical equations and categories consensus science keeps force fitting to Nature, but Nature’s true symmetry of nested harmonic repetition.

Solar Coronal Loop

Such organization and harmonic resonance between phenomena across all orders of scale is not the result of random anything. It’s the result of electricity.

The same phenomena is found on any planetary body that carries an internal current that forms an electromagnetic field. The coronal loops are ultimately caused by the voltage between the magnetosphere and Telluric currents below Earth’s crust, just as they occur above and below the photosphere of the Sun and in the atmospheres of Jupiter, Saturn and Venus.

The electrical stress across the layers of atmosphere and crust is charge building on layers of dielectric, which is what a capacitor is. A storm is an expression of capacitor discharge.

Tornadoes are a harmonic fractal repetition of the super-cell storm as a whole. They are nested coronal loops inside the bigger loop of the storm. Because they are smaller and generate from an intense charge density region of the corona, the energy is more concentrated.

Look again at the image of a solar coronal loop and see there is a smaller loop of higher intensity. This is the effect of an embedded harmonic repetition; and that is what a tornado is to the storm it’s born from. But, as always, it’s more complicated than that. We’ll delve deeper into tornadoes next time to complete the picture of a thunderstorm.

Nature’s Electrode

Re-posted courtesy of

The following image is from NOAA, and illustrates the consensus theory of lightning genesis. As you can see, it shows electrons collecting like marbles in a sink, accelerating down a slippery slope into what looks like a drain.


A typical cloud-to-ground lightning needs a billion-trillion electrons. Are electrons just randomly floating in the clouds when suddenly, a billion-trillion of them jump into an imaginary drainpipe like this image portrays?

The consensus notion is that charge builds in thunderstorms because of static electricity. The friction of hail stones and rain colliding in the storm generates static charge, like rubbing a balloon against hair, or shuffling feet on carpet.

Positive and negative charged particles from this friction separate into layers according to the consensus notion. The layers where they are found “pooling” are at distinct thermal boundaries. So it’s thought these thermal boundary layers keep the “pools of charge” apart, except when they arc.

Super-cell electrical anatomy

The situation is depicted in this NOAA image of a super-cell, where layers of charge are shown stratified inside the cloud. To become coherent, stratified and able to build enough charge for a five-mile long lightning bolt – a billion-trillion electrons worth – the charge density required implies a plasma is involved.

In fact it’s more than an implication. How else could so much charge collect to create such arcs? There is no wire in the sky, no battery terminal, or electrode to generate an arc. These “pools of charge” must be plasma’s.

It only takes 1% of neutral air to be ionized for it to behave as a plasma. Lightning genesis requires a plasma, because that is what forms the “electrode” in the sky. Let’s consider lightning and how, why and where plasma forms to play a role in making it.

Electric Sky

We know Earth’s atmosphere is an electric circuit. It carries charge, current and voltage.

The air is a weak conductor with a variable, vertical current between the ground and the ionosphere of 1 – 3 pico-amps per square meter. The resistance of the atmosphere is 200 ohms. The “clear sky” voltage potential averages 200 to 400-thousand volts between Earth and the upper atmosphere.

At any given moment, there are about 2,000 lightning storms occurring worldwide. To create lightning, the electric field potential must overcome the dielectric breakdown of air at 3 million volts per meter. It does so because the electric field in a thunderstorm jumps to over 300-million volts.

A typical lightning bolt is three to five miles long, and momentarily delivers about 30,000 amps to ground. The collective current from a typical storm delivers from .5 to 1 amp.

The circuit is completed – a worldwide current from Earth to sky, and storms that return it from sky to ground. The 2,000 concurrent lightning storms, each about an amp-and-a-half, means this worldwide current is about 3000 amps.

Only that isn’t the whole story, because there is much more science doesn’t know about Earth’s circuitry. There is also an exchange from atmosphere to space, and space to atmosphere. This has yet to be accurately measured, or understood.

The existence of plasma discharges from thunderstorms to space, called Sprites, Gnomes and Elves for their brief and ethereal appearance, is a relatively recent scientific discovery. Their genesis, power and frequency is far from understood. Wal Thornhill discusses these phenomena in much more detail in his article, The Balloon Goes up over Lightning.

Cosmic rays enter the atmosphere, adding charge continuously. The rate Earth is exposed to solar wind fluctuates widely, both because the Solar current fluctuates and so does the strength of the Earth’s magnetic field. Sometimes the shield it provides moves around, letting more cosmic rays enter through “holes”.

Electricity flows around Earth in Birkeland currents, molded by the Geomagnetic field. How these currents fluctuate in density, and the resulting induced currents in the atmosphere and ground, is another area of scientific uncertainty.

Because of the variability, variety and the fact they haven’t noticed until recently, consensus science can’t yet understand how much current is entering, or leaving Earth’s atmospheric system from space.

The ground also carries potential that varies. Except for the monochrome view of seismic returns, we can’t even see what is below the Earth’s crust to comprehend the flow of current there. Nor whether, how, or where Earth’s current might enter the atmosphere. For electricity, boundary layers like the Earth’s crust isn’t an impermeable barrier, it’s an electrode.

There is a “cavity” defined by the surface of the Earth and the inner edge of the ionosphere. It’s been calculated that at any moment, the total charge residing in this cavity is 500,000 coulombs. Electromagnetic waves reflect from the boundary of the cavity – the ground and ionosphere – and establish quasi-standing electromagnetic waves at resonant frequencies. W. O. Schumann predicted the resonant properties of the cavity in 1952, and they were first detected in 1954. They are called Schumann’s resonances and are measured as broadband electromagnetic impulses at frequencies in the range of 5 to 50 Hz.

The atmosphere is undeniably electric. It’s not a few ions benignly floating around in the air, occasionally forming into “pools of charge”, but a globally active and coherent circuit. What should that tell us about lightning? Mustn’t it also be part of this coherent resonant system. Doesn’t it beg for a better model than marbles in a drainpipe?

Fortunately, there is a model to look to. It’s called electronics.

Atmospheric arcs created in a circuit are generally recognized to occur by thermionic emission. Everyone has seen a hot cathode arcing, as in a welding arc, where electrons are freed from the metal surface of the electrode by heat. The metal is heated by its own resistance to current, and begins emitting electrons above a certain temperature threshold specific to the electrode material. The temperature for many materials is thousands of degrees.

Another form of discharge less well recognized is field emission, or cold cathode emissions. They do not generate electrons by thermionic emission. The electrode warms, but not appreciably because heat is not what frees the electrons. It’s the electric field strength – a high voltage potential, that strips electrons from whatever material is present, including the air itself.

When this happens, the field forms ionic matter into a plasma structure, called a corona. Corona is the electrode in the sky that discharges lightning.

Coronal discharge is used in a variety of ways in modern technology. It requires a high voltage, which is precisely what is present in a thunderstorm – 300 million volts, or one thousand times stronger than in clear weather.

Corona is the only electrical phenomena that can result in a non-thermionic discharge under atmospheric conditions. It’s the driving force of the storm and the generator of lightning.

Corona occurs in a layer perpendicular to the electric field where the field strips electrons from atoms, sending them downward at near the speed of light along the field gradient, to collide inevitably with another atom.

The collision strips more electrons free to follow the electric field, leaving ions behind. The region where electrons are stripped is a cold, partial plasma. Increasing charge density by stripping and collision amplifies and shapes the electric field, which self organizes into a corona. The “pools of charge” layered in the atmosphere are not pools of positive and negative charge as depicted, but coronas that exhibit positive, or negative polarity, composed of some mixture of ions and neutral species electrically interacting.

animation_7aFree electrons continue the process of collision in what is called an avalanche. Avalanche is portrayed in the step-leader process depicted in the image, and is a witnessed precursor to a lightning bolt.

The avalanche is one half of the picture, however. Lightning comes from below, as much as from above. The electric field also pools positive ions on the ground below the storm. Ionic streamers, filaments of positively charged air stretch up the electric field towards the clouds. A lightning bolt occurs when the cascading step leader and streamer meet, completing a plasma channel. None of this is seen with the naked eye. It’s all dark current up to this point.

animation_16aThe lightning channel is complete when it connects to a ground streamer. The connection allows a dump of electrons from the corona to ground. Then, heavier, and significantly slower ions, carry up the channel in a return stroke.

The return stroke can be seen in the image as the bright flash that occurs the moment the first tendril of the avalanche current strikes Earth, leaving only one path glowing after the flash.

Corona provides the reservoir of charge and the dark current mechanism for avalanche required to make an arc. This is what is missing in the consensus notions.

The other consensus notion, that static charge builds from hailstone collisions, is also inadequate.

A study using interferometer  and Doppler radar to correlate lightning with updraft and downdraft winds, showed that lightning forms in low pressure winds around the storm cell central updraft of warm moist air. As a storm organizes and the updraft speeds up, lightning frequency dramatically intensifies.

220px-lightning_over_oradea_romania_croppedUpdraft winds don’t produce much lightning until they reach 10 to 20 mph. Then strike frequency escalates with updraft speed. From 20 to 50 mph wind speeds, lightning frequency might be 5 to 20 strikes per minute, whereas above 90 mph, the flash rate can exceed one strike per second.

It’s like a motor running and the central updraft is the primary mover.

Water in a thunderstorm updraft goes through all of it’s phases. From water vapor, to cloud condensate, to rain droplet, to ice. The structure of a thunderstorm is oriented vertically around the central updraft. The phase changes stratify charge at temperatures where the transitions create ionization events.

Water is self ionizing. Water in its liquid state undergoes auto-ionization when two water molecules form one hydroxide anion (OH-) and one hydronium cation (H3O+). Water can further be ionized by impurity, such as carbon dioxide to form carbonic acid. Water condensing into clouds and droplets within a strong electric field provides an ionization event.

Water can become supersaturated – rising above 100% relative humidity if air is rapidly cooled, for example, by rising suddenly in an updraft. The supersaturation instability provides another opportunity for ionization.

Ice is typically a positive charge carrier, meaning that current flows over it’s surface in streams of positive ions. Flash freezing water onto ice, as hail stones grow, provides another opportunity for ionization.

Each layer of air in a storm has different temperature, humidity, pressure and velocity, transporting different phases of water at different partial pressures, which means the conductivity of the air is changing too.

This last item is important to remember. More about how this creates coronas requires a broader look at the circuitry of a super-cell thunderstorm, which you will find interesting because it will show how coronas produce other effects. Perhaps it even explains all of the effects of thunderstorms. The electrical circuitry of a super-cell will be continued in the next companion article on Earth’s electric weather.

Over the series of articles we’ll present, corona and it’s role in our weather will lead back to geology and previously presented discussions of Arc Blast and how mountains are built. Like all things electric, fractal forms repeat such that a coherent picture emerges, and boy, have we got a picture for you.

Thank you.

The Maars of Pinacate

Re-posted courtesy of

International Space Station
International Space Station

El Pinacate y Gran Desierto de Altar is a geologic wonderland for volcanologists. It should also be a laboratory for study of the Electric Earth.

Pinacate is a monogenic volcanic field in Sonora, Mexico that lies just south of the Arizona border, seventy miles east of where the Colorado River empties into the Sea of Cortez. It is a protected Biosphere Reserve and World Heritage site.

Monogenic volcanic fields, meaning each eruptive feature in the field is the product of a single, short eruption of unique magma, are not uncommon in North America. In fact, Pinacate is one of fifty that dot the landscape from central Mexico to Colorado. What makes Pinacate special is its pristine nature, for it is largely untouched by human hands, or the effects of severe erosion.

edward_abbeyIt’s location in the desiccated Altar Desert of Sonora is the reason it has remained pristine. As Edward Abbey wrote of the Altar: “This region is the bleakest, flattest, hottest, grittiest, grimmest, dreariest, ugliest, most useless, most senseless desert of them all. It is the villain among badlands, most wasted of wastelands, most foreboding of forbidden realms.” In other words, it was one of Abbey’s favorite places.

Geologists insist Pinacate is dormant, but recently so. It’s last eruption is dated a mere ten thousand years ago. But local lore of the Tohono O’odham people, descendants of the ancient Pueblo culture known as Hohokam, insist there have been two minor eruptions in the last century, one in 1928, and again in 1934. Seismographic records don’t bear this out, say geologists, indicating no seismic event associated with volcanic activity was recorded at the time.

stinkbug_0053Its many lava flows and tephra beds portray the Pinacate as the result of three volcanic periods. First it developed as a shield volcano, raising the mountain that gives the field its name.

Pinacate is derived from the Aztec word for black beetle, and is commonly used for the desert stink bug. Identity with the mountain is understandable since stink bugs hold their rear high and emit a foul odor.

The next period brought blooms of pyroclastic eruption that left over five-hundred volcanic vents and cinder cones across 770-square-miles.

Its final phase created several maar craters. The Pinacate is best known for maars and the rings of tuff they create. There are about a dozen maars and tuff rings in the Pinacate.

The crown jewel is El Elegante. One mile in diameter, with steep sides sloping to a depth of 800 feet, it looks like a giant bottle cap was pressed into the earth to leave this depression. Its size, symmetry and scalloped edges earn ‘The Elegant One’ its name.


Maars are one expression of a diatreme volcano. Their creation is brief and explosive. Magma rises beneath moisture held in an aquifer, sub-surface stream, or permafrost, and vaporizes the water in a series of blasts that last from a few hours to several weeks.  A shallow crater with a bowl floor and a low raised rim is left, over a rock-filled fracture called a diatreme. Typically, maars fill with water following eruption, leaving a lake. The maars of Pinacate are dry and accessible.


No certainty as to formation is truly known in consensus science. The inverted cone shape of a maar diatreme has been generally assumed to form by shallow explosions first, followed by progressively deeper explosions.

The explosions are thought to be caused by the instant vaporization of ground water when it contacts hot magma. If deep explosions occurred first, they would hollow out a wide void, not a conical vent.

But the shallow-first theory should produce ejecta of shallow rock covered by later deposits of deeper rock. Examination of maars show that deep rock fragments are well mixed with shallow rock, implying explosions occurred throughout all depths at once.

Geologist Greg Valentine, a professor at the University at Buffalo in New York, and James White, an associate professor at the University of Otago in New Zealand, have created a new model to account for the jumbled order of explosions. Their model, published online Sept. 18 by the journal Geology, suggests individual explosions are relatively small, and shallow explosions are more likely to cause eruptions than deep explosions.

The model did not include subsurface electrical discharge as a possible causation. Perhaps it should.

If it walks like a duck…

The likeness of Pinacate’s craters to Lunar craters made it a perfect training ground for Apollo astronauts. It’s also a reason the area should be of interest to the study of Electric Earth phenomena. Close inspection of craters and other features in Pinacate reveals more than a casual resemblance to the craters of the Moon. Let’s take a look.

Rim Craters…

Beginning with El Elegante, the Google Earth image below shows a rim crater at the four-o’clock position – the only flaw in its beautiful symmetry.

El Elegante, top view
Rim Crater, side view

It is explained as an older cinder cone that was split in half by the maar eruption.

Rim craters also occur on other maars in the Pinacate. In fact, more than half of the maars have features that appear to be rim craters. Perhaps it is normal for maars to occur at the edge of older volcanic vents – perhaps the older vent plays a role in creating the maar. Or they may be what they look like, a feature caused by a filament of electrical discharge.

Rim craters occur with such regularity on rocky bodies in our solar system it is statistically absurd to think they are caused by chance impacts. They are a known feature of electrical discharge, as filaments of spark will form craters within craters, and often ‘stick’ to the rim of a crater previously formed, leaving rim craters.

The maar shown below is 0.9 miles wide and 250 feet deep. It also displays scalloped edges and a  large rim crater at the five-o’clock position. Another small rim crater is at the nine-o’clock position (all overhead images are oriented with North up, at the 12-o’clock position).

Most confusing, assuming the consensus science view of how maars are created, is the small tuff rings in the floor of the crater beneath the large rim crater. In this case the rim features can’t be the remnant of an older cider cone since they could not possibly have pre-existed the maar eruption. It must be the remnant of events that followed the sequence of eruptions that made the maar – but where is the debris from this later event?


Side View of Rim Crater

This maar, 2400 feet in diameter by 50 feet deep, at half past six-o’clock, has three apparent rim craters blanketed by an inflow of red ash, as if the event flattened the cinder cone next to it by pulling it in.


The next images show a rim crater at six-o’clock in a primary crater that is 2,600 feet in diameter by 150 feet deep. The triangular wedge is actually a slice from a pie-shaped depression at the rim.


The next images are of a maar 3400 feet in diameter by six hundred feet deep. It shows a rim crater at eleven-o’clock. Grey ‘ejecta’ blankets the rim crater. But the side view shows the rim crater has a steep, conic depression below the grey material.

The grey ejecta is obviously associated with the maar and blankets the slopes and lava flow of the red cinder cones nearby. This appears to be the case with the other maars, indicating they occurred in the latest series of eruptive events. However, the question should be asked whether the material was blown-out, or sucked-in by the event that made the crater.


The grey blanket is formed into dunes (see top center of photo above). Dunes exhibit a gentle slope to windward, and a steep reverse slope to leeward, suggesting at least the final winds of this dramatic event were directed inward to the crater.

Cerro Colorado…

The best example of a rim crater in the Pinacate is Cerro Colorado. Thought to be the result of multiple blasts though several vents, the main crater is 3,200 feet across, with a canted rim. The lopsided rim is thought to have been created by prevailing wind depositing ejected material preferentially to the south, or because subsequent explosions caused the north side of the rim to collapse, depending on which consensus theory is chosen. Neither provides a satisfactory explanation of the rim’s appearance.

The lopsided rim of  Cerro Colorado
Large rim crater at Cerro Colorado

On closer look, it could also be interpreted that material was drawn in, the way a tornado draws ground winds to it, to create the lopsided rim. The neat, even edges and compact symmetry of the aureole around the rim appears to be caused by in-flowing winds rather than several explosive outward blasts.

Rim Crater is at 11 o’clock

In the next image, along the crater rim can be seen layers of deposition, consistent with the effects of winds being drawn inward to the crater.


The Electric Volcano…

There is no question that Pinacate is a volcanic field. The lava flows, ash and tuff attest to that. We see active volcanoes around the world. The Ukinrek eruptions on the Alaska Peninsula in 1977 created two maar craters.

USGS – Ukinrek Eruption

The largest of these maars, now filled with water to form a lake, erupted for ten days to create a crater 1,000 foot wide. The Photos above show the eruption and resulting maar.

The largest Pinacate maars are one mile in diameter. The largest known maar on Earth is on Alaska’s Seward peninsula, and is five miles wide. The magnitude of the Pinacate and Seward Peninsula events dwarf the Ukinrek, or any other eruptions seen in historical times.

Consensus science does not explore the electrical nature of volcanoes, and the potential effects of an intensified electric field. They should be interpreted with electromagnetic effects in mind to understand them fully.

If lightning can occur in the sky, why not in the ground?

A capacitor stores electrical charge up to a point, and then lets go, like a dam breaking. It’s called dielectric breakdown, and sparks are the result; sparks are the flood of current through the dam. Lightning is one example of a spark we’ve all seen, but there are several types of electric discharge to consider.

Each type represents a flow of current, electrons and/or ions in an electric field. What primarily differentiates the type of discharge are polarity and surface features of the electrodes, the voltage and current density and the medium the current travels through.

Our atmosphere carries an electric field. The atmospheric field varies widely – from night-to-day and summer-to-winter – between 100 volts per meter vertically in clear weather, to orders of magnitude stronger during thunderstorms.

Normally the atmosphere carries a minor fair weather current of one pico-amp per square meter. This tiny current is thought to be a return current caused by lightning around the world, diffused throughout the atmosphere.

We don’t notice what’s happening electrically in our atmosphere normally, because we live on the earth’s surface in an equipotential layer. We don’t notice, that is, until a thunderstorm arrives.

NOAA Image

Lightning from a thunderstorm has no ‘electrode’ in the sky. It comes from accumulations of charge in the clouds – pools of electrons, or ions, like the accumulated charge on a capacitor plate.

Temperature and pressure moved by shearing winds take the place of the plates in segregating regions of charge.

A study using interferometer  and Doppler Radar to correlate lightning with updraft and downdraft winds showed that lightning avoids the updraft core (red arrow in the image) and forms in regions of weaker winds around the updraft. As a storm intensifies and the updraft speeds up, lightning frequency dramatically intensifies around the updraft.

James Dye, a researcher on the study from the National Center for Atmospheric Research in Boulder, Colorado said the findings were a surprise. The massive accumulation of charge in thunderstorms is believed by consensus science to result from static buildup caused by ice formation and collisions in the fast updraft region, so they expected to see lightning there. Instead they found the lightning surrounds the updraft.

Consensus science always requires collisions of some sort to explain electrical phenomena. Physical processes such as induction don’t seem to be included in their scientific toolkit. However, fast updraft winds are likely motivated by electric current in the storm in the first place, so it is not surprising in an electric atmosphere that positive ions in a powerful updraft would collect negative charge around the updraft column, which is where they found lightning to initiate.

220px-Lightnings_sequence_2_animationThe study indicates updraft winds won’t produce much lightning until they reach 10 to 20 mph. Then strike frequency escalates with updraft speed. From 20 to 50 mph wind speeds, lightning frequency might be 5 to 20 strikes per minute, whereas above 90 mph, the flash rate can exceed one strike per second.

In a consensus scientists mind, this can only mean one thing: the ice is colliding faster! Back in the real world, the updraft should be recognized as a current, with faster winds producing higher charge density.

In any case, the charged layers in the cloud, and the thin, flashing filament we see in common cloud-to-ground lightning, is only part of the event. There is also buildup of positive charge on the ground. The ground charge forms as a pool of positive ions over the surface of the land and its features, accumulating in the highest concentration at high points. The positive ions form when electrons are stripped away from air and surface features by the electric field.

The lightning bolt initiates when the negative charge invades the air below with filaments of charge called leaders. They zig-zag downward in stepped segments while the ground charge reaches up in a filament of positive ions called a streamer. When leader and streamer meet, the channel is complete and dumps the negative cloud charge to ground.

The ionic ground charge follows, ions being heavy and therefore slower than electrons, rushing up the channel at 60,000 miles per second in what is called a return stroke. It’s the return stroke we see emitting light from particle collisions in the channel. Return strokes often repeat as new charge pools and discharges, producing multiple flashes until charges equalize.

It all happens very fast. You can’t see these charges moving around and pooling, but you can feel it. It’s called wind.

Another type of lightning is Positive lightning, from buildup of layers of positive ions in the tops of thunderclouds, which create arcs more powerful by a factor of 100 than common lightning between ground and the negatively charged cloud bottom. Positive lightning also travels farther …

The 200 Mile Lightning Bolt.  A typical lightning bolt is about 3 miles long. This Oklahoma storm produced a record lightning bolt that traveled 200 miles across blue sky.

The longest lasting lightning was recorded in France, at 7.74 seconds. Typically, lightning will pulse several times, but the total duration is less than .2 seconds.

These record setters show that lightning can scale by orders of magnitude. In fact, we know no limit to how large it can scale.

So what does all this have to do with Volcanoes?

Lightning is seen not only in thunderstorms, but in snowstorms, hurricanes, intense forest fires, surface nuclear detonations and – you guessed it, volcanic eruptions. There are two regions to consider in electric volcanoes. Above and below the ground.

Above, they are integral to the Earth-Sky circuit. A volcanic plume is a dusty plasma – pyroclastic ash mixed with ionized gases. How such a plume might increase the charge density between Earth and sky is unknown, but powerful volcanic lightning is a known occurrence.

Volcanic eruptions throw hot, pyroclastic material into the sky.  The volume of scorching hot cloud that erupts upward is not filled by the erupting gases alone. Ground wind necessarily flows inward to fill the cloud from below.


At right is a depiction of how a nuclear air-burst detonation is designed to destroy a city. The sudden expansion of gases created by the blast rise up leaving a rarefied region. Inward flowing ground winds reach the speed of an F-5 tornado, 300 mph, filling the vacuum created beneath the rising fireball, and leveling anything in its path.

A very large volcanic plume can have the same effect, drawing winds inward at ground level. This seems the more likely explanation for the lopsided rim and even, circular aureole of Cerro Colorado. It may also explain why maar craters, in general, have characteristically small amounts of ‘ejecta’ concentrated around their rims.

But beyond the kinetic effects of the plume, the rising column of ionic material will act in the same fashion as the updraft in a thunderstorm, generating lightning around the column. At the mouth of the erupting vent, one can imagine the current flow drawing ionic charge to it from the surrounding land. This may be why rim craters occur where they do, at the boundary of the rising plume.

2885354673_67031a2ff0_nConsensus science has concluded there are two forms of volcanic lightning. Researchers led by Corrado Cimarelli, a volcanologist at Ludwig Maximilian University in Munich, Germany, studied Sakurajima volcano in Japan, and concluded ash particles are responsible for building static electricity that discharges near ground level, as they reported in the journal Geophysical Research Letters.

A separate study, also published in Geophysical Research Letters of the April 2015 eruption of Calbuco volcano in Chile, discovered lightning  striking 60 miles from the eruption, from 12 miles above Earth. The scientists concluded the thinning ash cloud formed ice that rubbed together to produce lightning like they say a thundercloud does.

The consensus narrative always needs a collision and static build-up of charge. Why this is so is hard to understand. No doubt rubbing and static charges do occur, but there is already an atmospheric electric field to work with, moving electric charge and oodles of ionization in these events, whether volcanic or thunderstorms.

They occur in the dielectric atmospheric layer between ground and the charged plasma of the ionosphere. By assuming electrical discharge is only occurring due to localized static charge is to miss the bigger picture, that Earth is just one device in a circuit.

Ground Blast…

Whether discharge comes only from the plume, or also within the ground is the second part of the electric volcano story.

We don’t know much about the currents within Earth’s inner regions. We know the crust carries current. Ground current is why we ‘ground’ electrical devices, so a voltage potential can’t build between the ground and the device and generate a spark, or worse, a dead person who’s last act on earth was to touch the device.

Ground Induced Current, or GIC, is current in soil, rock and water, as well as metal fences, pipelines and wire. It’s induced by atmospheric current, because the two are coupled.


Solar activity is a forcing influence on atmospheric current, increasing the dangers of GIC during solar storms.

The Carrington Event of 1859 was a solar flare that, among other things, produced especially energetic aurora’s and induced current in telegraph wires. Many lines burned-up, telegraph operators were shocked and showered with sparks. Some reported the telegraph had so much current, they continued working without a power source after generators were disconnected.

th-10GIC may not be the only source of electrical current on and under the ground. After all, the rush of lava and gases through vents in Earth’s crust would seem to require a lot of things rubbing and colliding. It seems necessary this would build static charge and cause discharges deep within the earth, even by consensus reasoning.

Even more likely, it’s electrical discharges deep within the Earth that heats the magma, vaporizes rock and causes eruptions in the first place. It’s entirely unknown what the voltage drop is across the layers of crust and mantle to the center of the planet, but given those huge auroral currents at the poles and the puffed up magnetosphere around Earth, one should assume it is rather large.

Pinacate and other volcanic fields display features Electric Universe Theory has ascribed to electrical phenomena on other planets and moons in the solar system. Since they appear on this planet too, they need to be interpreted in the context of an Electric Earth.

One look at the Delta-Wye configuration at the bottom of this maar in the image below, and the question – is Earth Electric – is, perhaps answered.

In three-phase electrical transmission, delta-wye connections are used to connect an ungrounded system, such as an overhead transmission line, to a grounded system, such as a transformer. The delta configuration is the ungrounded connection of three phases of current, whereas the wye connects the three phases to ground at the center of the wye.

Note the Delta has three tendrils that lead to rim craters.


A geo-botanical feature at the bottom of a volcanic crater imitating electrical circuitry may be an astonishing coincidence. Or not. It may be a physical expression of how sky and ground currents ‘couple’, the same way we couple a transformer to a power line.

Lest we forget the Moon, and the physics of electrical scarring, we can look there for hints at how subtle electrical scarring can be. And since this comes from NASA, it’s all the more astonishing.

fig1_breakdown_image_text_bw2_colorDeep craters at the polar regions of the moon never see sunlight. Within these eternally dark and frozen craters, cosmic rays are bombing the surface, creating a double layer of opposite charge, because it is theorized, electrons penetrate to the subsurface, while positive ions hit and collect at the surface – it’s always the collision thing.

The double layer discharges tiny sparks that vaporize dust, launching it up to float in a thin atmosphere above the surface. This dust atmosphere was first noticed by the Apollo crews and remained a mystery for decades.

More Lunar Features at Pinacate…

There is more evidence of electrical influences in the Pinacate volcanic field and the surrounding Altar desert than rim craters on the maars. Some maars that don’t have rim craters appear as doublets, or multiple craters with consistent floor depths. These too, are features similar to the unusual shapes seen on the Moon and Mars.


Tuff Rings…

A “tuff ring” is the volcanic rim surrounding a maar crater. The tuff ring forms as hot ejected tephra falls back to Earth and lithifies into a ring of welded tuff. They are typically low relief, with a gentle slope of less than ten degrees on the outside. Several tuff rings in Pinacate are exposed, but the crater that formed them is buried.

The next four images show, in order:

  • Concentric tuff ring inside a tuff ring, with rim feature at three-o’clock;
  • Concentric tuff ring inside a tuff ring, with rim feature at nine-o’clock;
  • Tuff ring with a rim crater at five-o’clock and an east-to-west crater chain at twelve-o’clock;
  • Polygonal tuff ring doublet,



Crater Chains…

Chains of raised tuff, craters and cinder cones:



Streams to Nowhere…

Unusual ‘erosion’ patterns seem to begin and end without reason. These stark patterns of apparent erosion cross playa that is dead flat – not one foot of elevation change is evident. They appear to be lined with black rock.


Fractal patterns…

Fractal patterns appear everywhere across the Pinacate, from lightning bolt rilles, to feathery ash and tuff deposits.

We’ll look at the electrical nature of volcanic fields more in future articles. Thank you.

El Pinacate…

USGS LandSat Image


The Monocline

Re-posted courtesy of

In previous articles, we discussed evidence of electromagnetic and hydrodynamic forces that shaped the landscape with arcing currents in an atmospheric surface conductive path. We theorized these currents sent bolides of plasma jetting through the atmosphere, blow-torching the ground below into craters and mountainous blisters, based on observed characteristics of the landscape.

The evidence on the landscape is in the form of triangular buttressed mountains and related land forms that display the shape of windblown deposits created by hot supersonic winds under the influence of shock waves. The triangular forms are created by reflected shock waves, heat, winds, molten rock and dust stirred by the blast of the arc.

It’s an amazing concept that has the potential to be proven, as discussed in Arc Blast – Part 1, 2 and 3, and in the accompanying “Space News” episodes, “EU Geology – A New Beginning”, “The Arc Blasted Earth” and “Extraordinary Evidence of EU Geology”. To understand the full context of this discussion, be sure to view these materials.

Recent field examination of triangular buttress features on monoclines in the Four Corners region of the southwest U.S. provides some confirming evidence for the theory, some conflicting evidence, as well as new information to expand theories for Electric Earth geology.

A = Four Corners, B = Site of Investigation – Google Earth Image

Field Notes from Four Corners

“Four Corners” is a nickname for the location in North America where the borders of Arizona, Utah, New Mexico and Colorado meet. It is a region of splendid beauty, history, mystery and geology.

It is among the most ancient regions known to have been occupied by the earliest humans in North America. Blackened rock is decorated with archaic petroglyphs and pictographs. “Squatter Man”  appears on random canyon walls.

It’s a region that suffered catastrophe, causing inhabitants to suddenly flee in a mass diaspora seven centuries ago. Cliff houses abandoned by the Anasazi Pueblo people haunt this region; derelict and silent in deep canyon clefts.

Through it flows the San Juan River, from headwaters at the Continental Divide immediately east of the region, to confluence with the Colorado River immediately to the west, before their joined flow cuts into Lake Powell and the Grand Canyon.

Yet the region is arid, desert plateau over 1500 meters above sea level. The geologic enigma of Monument Valley lies at its core. On a satellite image, it stands out like a bulls-eye on the landscape of North America.

Near the Navajo town of Kayenta, Arizona is the southern end of a monocline – a curvalinear ridge nearly 100 km long, that extends from Kayenta east, and then north to Horse Mountain in Utah. It’s named Comb Ridge. It borders Monument Valley on the south, and east, and is sliced by the San Juan River at the mid-point. A field examination of Comb Ridge was recently performed and is the focus of this article. As we will discover, it holds answers about the form of our planet.

Pressure Ridge (AKA, The Monocline)

Below is an image of Comb Ridge near the town of Kayenta, Arizona. It was investigated on August 13, and a subsequent investigation was made the following week of another monocline ridge, the San Rafael Reef in Utah, to compare and confirm consistency of findings. A report on the findings of the San Rafael investigation is forthcoming, however some photographic evidence from the San Rafael Reef is used in this article to illustrate findings consistent to both monoclines.

The Kayenta Monocline (pin denotes area investigated) – Google Earth image.
San Rafael Reef, Utah – photo by author.

By mainstream reasoning, these are sandstone sediments that drape over the scarp of a deep basement fault, where one side of the fault lifts higher than the other leaving a linear ridge on the landscape. These ridges are often called hogbacks. They can be a linear hill stretching a few hundred meters, elevated a dozen meters in relief , or they can be a curvalinear mountain ranging more than a hundred kilometers long and a thousand meters in elevation.

Their most common characteristic is they display the layers of sediment exposed on one side along the steep and often jagged high end, and a shallower sloped and generally planar faced opposite side – a ski slope is the term often used.

Layered sandstone tilted to a consistent angle is characteristic of the monocline. Google Earth image.

They also display particular features that betray their true origin. Namely, triangular buttresses.

Triangular Buttresses near Kayenta, Arizona. Google Earth image.

Arcing current discharge will create a supersonic shock wave. A shock wave travels as a pressure wave though a medium until it hits a medium of higher density, and then it reflects. Shock reflections create standing waves in the general shape of triangles and diamonds, with other variables contributing additional effects that can modify the form.

Reflected shock waves from a bullet impact produce triangular wave forms in higher density material surrounding the impact.

These are not created in the same fashion as described in Arc Blast, however, at least not exactly the same. They are still created by supersonic shock waves and winds, only the cause of the winds is not an atmospheric arc, as described for an arc blast.

On-site examination of the monocline reveals no mountain core beneath, or behind the layers forming the buttresses as expected from an arc blast event. By all appearance, they are a windblown pressure ridge, against which the buttresses formed.

Mainstream theory holds that triangular buttresses on the monocline are either formed by seismic waves, or water erosion.

The seismic theory is nonsense, since the theory requires the triangles to form by shifting fault blocks and this simply does not comport with observation. That would create discontinuities and broken debris between shifted blocks and they aren’t present. The buttresses are monolithic layers and sheets without significant displacement at faults and cracks.

Seismic forces had nothing to do with forming them. Close examination of the hills and surroundings allows us to address water erosion more fully, and find evidence for a theory of electrical formation. Let’s begin with the survey.

Examining The Buttresses

Area of investigation near Kayenta, Arizona. Photo by author.
Face view of the Kayenta buttress examined. Kayenta, Arizona – photo by author.

The dip of the stratified layers at the place of investigation was approximately 20 degrees, although other areas displayed both steeper and shallower angles of repose. The strike orientation (from center of triangles base to apex) was north – northwest. The hogback bends northward, so the strike near the north end is due west.

Water Erosion

Definite signs of water erosion were found on exposed sandstone walls in the creek that ran between the base of the buttresses. Evidence of significant flow in the wash showed to a height of about five meters above the creek bed.

Water worn sandstone in the wash at the base of the buttress – the only significant water erosion found. Kayenta, Arizona – photo by author.

Here is found the smooth, rounded, water worn rock one expects to see as the result of water erosion. Creeks flow between buttresses in this fashion infrequently, so are not the cause of their consistent triangular formation. This creek was used as an access to traverse through the monocline.

Elsewhere, water erosion was not evident other than superficial surface erosion and discolorations. Following are several examples that dispute water erosion as the mechanism that formed the triangles.

Wind Blown Rock

The edges of layers show the fineness of strata. Moisture may have caused clay to swell, contributing to the weathering, but smoothed edges from flowing water is not evident.

Finely layered, weathered sandstone on the uppermost layer. Kayenta, Arizona – photo by author.
A thirsty investigator finds disappointment – where is the water? No evidence here. Kayenta, Arizona, photo by author.
Apex of the buttress in the background is loosely consolidated, and should be easily carved by water, yet shows no evidence of water erosion. The underlying strata forms an uneven surface of harder rock with contours that could not physically produce a triangular shape by water erosion on the buttress below.
The apex of the harmonic buttress is loosely consolidated and displays no evidence of shaping by water erosion. San Rafael – photo by author.
Note the triangular definition of the highest peaks where the red and white banded layers appear – there is no watershed above to provide water for erosion, yet they are triangular buttresses. Also note, the lower harmonic wave forms are near perfect triangular layers over a chaotically channeled layer of rock – is there any plausibility to the notion that water, randomly flowing down these tortured channels, could form dozens of triangular buttresses in a coherent harmonic distribution that repeats in fractal form for miles? San Rafael – photo by author.
Supersonic shock and wind is the only means of forming consistent repetition of harmonic wave forms. Mainstream theory of water erosion cannot do this (if you think it can, please reference some empirical evidence). San Rafael, Utah – photo by author

Layered Strata

Strata are sandwiched in thin, straight, even layers, as well as monolithic concretions.

A meter thick layer separates two monolithic layers. The layers’ edge has a molded wavy appearance, but the thin layer makes a straight line if viewed edge-on. San Rafael, Utah – photo by author.

The San Rafael Reef displays mixed bands of what appears to be white Wingate Sandstone of Triassic age, and red Navajo Sandstone of Jurassic age. How they mixed in alternating bands on triangular Buttresses is best explained by supersonic winds.

White layers of Wingate Sandstone streak through layers of red Navajo Sandstone. What caused them to mix like this?. San Rafael, Utah – photo by author.
Loosely consolidated dirt and rock is sandwiched between fine, hard sandstone. San Rafael, Utah – photo by author.

Some layers are loosely consolidated sand and dirt in a mixed matrix including chunks of rock. Some are finely grained hard rock.

Still others are hard, flat and ruler straight layers of such thin, even depth, they appear as if electroplated onto the layer below. These layers are four to twelve inches of extremely hard rock, flat surfaced and scored with rectilinear fractures such that it resembles a brick wall. The rock even looks like baked brick, with smooth planar surfaces.

“Brick walls like this were observed as the outer layer, as shown here, and as intermediate layers on buttresses. San Rafael, Utah, photo by author.

Also in the photo above, small triangular red discolorations appear in harmonic reflection across the base of the “brick wall” at about knee height, as if spray painted on – they can barely be discerned in the lower right.

Some layers display plastic deformation, as if molten, or hot and plastic when deposited. Typically seen composed of fine grained, tightly packed, homogeneous, hardened sandstone.

Visual evidence of fluid plasticity when deposited – apex of the top layer droops over the preceding layers. Note the narrow gray pressure ridge alongside the road behind the monocline was also layered there by winds. Kayenta – Photo by author.
The outer edge of the top layer displays an upward curl in places, indicative of plastic deformation, or boundary layer wind effects during deposition. Note the rough edged breccia on the lower layer shows no path, or effects from water erosion. Kayenta, Arizona – photo by author.

Shock Fractures

Striations and fractures appear throughout the buttresses. Typically they form at the same angle as the triangle, normal to it, or in checkerboard fashion as shown in the picture below, consistent with shock effects. Checkerboards appear in hardened strata that may have shrunk while cooling, creating a pillowing effect that widens striations at the surface. Water has superficially eroded striations vertical with respect to the hill, but horizontal striations are straight and clean.

Surface fractures appear in diagonal and rectilinear lines consistent with dissipating shock reflections.
Deep parallel cuts are consistent with expanding shock waves. Kayenta – photo by author.

An Unexpected Find – Dikes

Facing the windward side of Comb Ridge is a vast windswept plain that drops into a river valley running parallel to the ridge. The plain is nearly featureless, except for the appearance of linear dikes radiating away from the ridge towards the river. The dikes are of a dark brown sandstone that resembles the Chinle Formation of Triassic sediments. The Chinle displays this amorphous, dark sandstone, that looks like petrified, boiled mud, throughout the southern Colorado Plateau.

Dikes on plains south of monocline. Kayenta, Arizona – photo by author.
Dikes aren’t straight. They offset, curve, wave and lean. Kayenta, Arizona – photo by author.
Visibly similar to Chinle Formation (unconfirmed). This is about twenty feet tall. See the hole? Kayenta, Arizona – photo by author.

The appearance of Dikes, their location and orientation, are curious for mainstream interpretation, given that similar dikes in the region are attributed to volcanic action. Near the meeting point of the four corner States juts Shiprock mountain. It has dikes emanating from it in a “Y” formation (or “wye” – hint, hint). How do the dikes of Shiprock relate to dikes formed at a monocline?

Shiprock from overhead showing radial dike “Y” pattern.

Situational Awareness

The Comb Ridge dikes visible at the surface are highlighted in the image below. It is apparent the dikes are related to the buttresses. One might conclude these are shock induced features, given their relation to shock induced triangular buttresses. They radiate at angles consistent with the angle of the buttresses and appear to terminate at the ridge itself. Other curious features can be found along the dikes.

Blue lines show dikes readily visible at the surface. It’s apparent they radiate from the monocline.

Future articles will further explore the Kayenta monocline, the dikes and the Four Corners region in general. This will include examination of fulgarite and fulgamite evidence, wind pattern evidence from the orientation of pressure ridges and buttresses, and the cause of winds and other forces that formed the landscape.

Arc Blast – Part Three

Re-posted courtesy of

In Part One of this series, we looked at how arc blast creates a mountain. We examined triangular buttresses on mountainsides and how they conform precisely with the characteristics of reflected shock waves. In particular, we looked at layering, compression and expansion of the wave-forms.

In Part Two we looked at evidence of harmonics, wave-form instabilities and boundary layer effects that are imprinted on the landscape.

In this article, we’ll take a closer look at layering and electromagnetic influences.

Electromagnetic Effects…

The sock waves are energized with current. The shock wave is a highly stressed region – a dramatic shear zone of pressure, density and temperature the ionized winds can’t penetrate. The shock wave itself is a conduit for current.

Current coursing through thin shock waves molds the electromagnetic fields in the coherent form of the reflected shock and sorts material according to its dielectric properties. The stratified layers of triangular buttresses are segregated by mineral composition. An current in the shock wave necessarily has a magnetic field surrounding it.


Blowouts…Another dramatic signature of an electrical nature is a feature we’ll call a blowout. Blowout occurs when the arcing current makes direct contact with the ground.The arc flash follows the most conductive path available. It travels in the ionized atmosphere, especially in arid regions where soils are dry and non-conductive compared to the ionized atmosphere above ground. When a conductive surface feature is available the arc will fork to ground.The conductive feature may be a mineral deposit, or water in a stream, aquifer or wetland. The result is a crater that blasts away a portion of the mountain being formed. The images below show a blowouts in the center of a mountain. It is apparent the crater significantly modified the form of the mountain.


Expansion Fans…The images to follow are from a complex formation of astroblemes in Iran. They are on the outside, or convex bend in a large mountain arc.One unusual crater shows shock effects as the apparent arc trajectory changes. The feature annotated is an example of an expansion fan, which is a set of reflected waves that occur on the outside of a bend (convex) when the source of the shock makes a change in direction. The fanning shock waves have produced linear hills that radiate from the bend.


Ejecta and Ablation Zones…Material ablated from the blast forms layered hills and pressure ridges on the surrounding area. Layering indicates material was blown away from the blast, instead of being drawn toward it by the suction of the mushroom cloud. Evidence of high speed winds is seen where they form fingers of conical flow, dunes and pressure ridges.

harmandpressablationtongue2Mt. Khvoshkuh30aMt. Khvoshkuh31aannotatedejecta2

Summary…Let’s recap what we have seen:

  1. Triangular buttresses form on the sides of mountains in the shape of reflected supersonic shock waves,
  2. They are layered onto the mountain, so they are not caused by seismic waves,
  3. They are not layered sediments from an ancient beach, or waterway since the sharply angled triangles are a consistent feature around the world and do not conform to any motion of random water waves,
  4. They are formed in all types of rock, including granite, so they are not formed by eons of normal winds,
  5. The triangular wave-forms exhibit compression and expansion from superimposed longitudinal and transverse waves,
  6. The triangular wave forms exhibit harmonic repetition consistent with reflected shock waves,
  7. The triangular wave-forms exhibit super-positioning and cancellation under compression consistent with reflected shock waves,
  8. The triangular wave-forms are parallel to the primary shock pattern, consistent with reflected shock waves and perpendicular to the wind direction, consistent with supersonic winds created by a shock wave,
  9. The triangular wave-forms exhibit less energy and more transient effects on softer substrates, and higher energy and sharper, more defined angles on hard substrates,
  10. Triangular wave-forms exhibit transient reflections, normal shocks and features of density variation consistent with supersonic reflected shock waves,
  11. The blast zones show concentric rings of pressure ridges, layered in the direction of the winds,
  12. The winds within the blast zone are directed normal to the central mountain, or  crater (outward blown winds), as indicated by surface layering on pressure ridges and buttresses,
  13. Boundary layer features of reflected waves can be found in the substrate of the blast zone, as seen in the road cut in Iran,
  14. Land surrounding the blast zone is blanketed with ejecta that exhibits flow patterns from high speed winds.

This concludes the Arc Blast series of articles on reflected shock waves and their significance. Future articles will examine more evidence for the effects of arc flash on the landscape:

  • The ‘rooster tail’ and how big mountains are built,
  • Following winds and how Kelvin-Hemholtz instability can modify a mountain ridge,
  • Complex mountain forms and mountain arcs,
  • The interrelation between volcanoes and mountains,
  • The connection between shock waves, fractals and Lichtenburg landscapes,
  • How rocks form,
  • The cause and nature of an arc flash,
  • Sub-sea canyons, trenches and rifts,
  • Examples from the archeological and mythological records of mankind.

What is proposed here can be verified. In fact, mountains are the most tangible evidence for the Electric Universe model available. The evidence is under our feet. There are already reams of geologic data waiting to be re-interpreted.

Geophysics, applied to evaluate geology as the consequence of electromagnetic and hydro-dynamic forces, will some day bear this out. You may even have the ability to bring that day closer. Your comments are invited.The End – Part Three.The proposed theory of arc flash and arc blast and their effects on the landscape are the sole ideas of the author, as a result of observation and deductive reasoning. Dr. Mark Boslough’s simulation of an air burst meteor provided significant insight into the mechanism of a shock wave. His simulation can be viewed on YouTube: Mark Boslough.