Category: Thunderblogs

Originally posted on Thunderbolts.info

Laramie Mountains – Part 2

In my last presentation, Easter egg hunt in the Laramie Mountains, we covered the near perfect cross of canyons made by two out-of-phase circuits coming together. In Part 2, we’ll look at the wind cut valleys around the cross that resulted from induced winds.

Many readers will recall Michael Steinbacher. He theorized landscapes formed by electric winds that prevented deposition of dust raining from the sky. He even performed experiments that demonstrated electric winds doing it. What I’m showing you is exactly what he was talking about.

Wind cut channels are sometimes narrow, straight and deep like the capacitive winds in figure 11, and sometimes they snake, divide and join following induction currents, cutting broad valleys with funnel shaped inflows, as shown in Figures 12 through 14. The (a) image is annotated with wind patterns and the (b) image is without markings for comparison.

Winds in the NE quadrant flowed parallel to the SE quadrant winds, and both cut perpendicular to magnetic field lines, but the NE winds shoot inside the loop of magnetic field lines to the apex, whereas the SE winds cut across the loop sideways.

In the NW quadrant, winds followed magnetic field lines, making a sharp bend at the crux of the “X” and staying inside the quadrant, but lifting as they made the turn.

The SW quadrant has a split personality. In one half winds flow straight at the crux of the “X” in direct opposition to wind from the NE quadrant. These winds met in a central updraft that lifted them vertical. In the other half of the quadrant, winds circulate, making an “S” shaped pattern that begins parallel to, and then crosses magnetic field lines perpendicularly.

Figure 12a
Figure 12b.

The reason for winds to flow either parallel to, or perpendicular to magnetic field lines is induction. Both moving magnetic fields and electric fields induce current. Reactive current is called capacitive when it follows electric fields. It is called inductive when it follows magnetic fields. Magnetic fields are perpendicular to electric fields in certain conditions. Since these mountains formed from circuits 180 degrees out-of-phase, things tend to line-up.

The Laramie circuit produced induction currents following both electric and magnetic fields. Winds in the NE quadrant were due to capacitive reactance, following the electric field. The NW quadrant winds were due to inductive reactance, aligned with magnetic field lines. The SW and SE quadrant winds were combinations of capacitive and inductive currents, but expressed in different geometries.

Reactive currents express either inductive, or capacitive behavior, or a mix in different parts of the circuit. Therefore it’s not surprising the southern quadrants have blended currents. What is surprising is how clear the pattern is etched, in spite of all the chaos and violence of this event. On display are electromagnetic forces that stirred the earth, like we would stir iron filings with a magnet.

Further away from the discharge, the southern quadrants mixed into a large tornado with two satellite whirlwinds that lifted wind in this quadrant into the mesocyclone storm (Figure 15). This tornado region sits just south of the “X” which marks the center of the mesocyclone’s central updraft. This position corresponds well with the formation of “wall clouds” that spawn tornadoes in typical thunderstorms.

Figure 15. Both southern quadrants display tornado footprints (violet) and shock waves (green). Blue are ground winds.

Shock waves reverberated absolutely everywhere, creating nearly vertical oriented tetrahedrons layered like fish scales. Shock waves from winds sucking into the maelstrom left triangular wave-forms where separation bubbles formed beneath screaming jet-streams. They display direction of winds that confirms the wind paths described.

Where wind exceeds supersonic speed and is forced to change direction, shock waves form. They are like folds in the fabric of the wind, which is stiffened into laminar jet streams segregated by extreme pressure differentials.

Tornadoes draw ground winds from all directions, but in a supersonic tornado, there is an inlet zone where the majority of wind enters the rotation. They are drawn from ambient jet stream winds that the tornado forms tangent to. Figure 16 shows winds entering the whirlwind change direction from linear to rotation, forming a large shock wave tangent to the rotation, and parallel to the jet stream (note 1). This inflow shock wave is a distinct feature of tornado “footprints” if the winds involved were supersonic.

If the winds also rotated at supersonic speed, additional shock waves form tangent to the rotation at points of shear between the rotating winds and ambient winds (note 2).

Finally, tornadoes may form shock waves due to shearing interior to the rotation where they curl inside the inlet zone (note 3).

Figure 16. Supersonic Tornado Shock Waves

The largest tornado in Figure 15 lies in the SE quadrant and produced Laramie Peak. It’s the highest point in the range at 10,260 ft, and sits next to a gouged-out valley that dips to 6,700 ft elevation. Both the valley and the peak are within the tornado’s rotation. Tornadoes form a cambered debris “bowl” where the winds scrape the ground. The debris is lifted away where the force of inlet winds carve at the land, and then are deposited on the opposite side of the rotation as the winds lift (Figure 17). Mt. Laramie is one such deposit.

Figure 17. Tornado mountain building.

Shock waves are evident where supersonic winds change direction. Examples in Figure 18a are tetrahedrons formed in the NE quadrant, where winds following the electric field lifted to create separation bubbles. They form tetrahedrons in linear rows conventionally known as monoclines, but they are, in fact, supersonic “sand dunes”. This is especially evident if you examine the breaks and inflections caused by constructive and destructive interference patterns.

Figure 18a shows tetrahedrons formed by jet stream winds rising to the mesocyclone in Area 1. A new set of tetrahedral dunes formed in Area 2, which deflected winds and starved Area 3, leaving a triangular interference zone that pinched out formation of tetrahedrons from the shock wave of Area 1. The gap between Areas 1 and 2 turned the wind and formed a tornado (Area 4) in it’s eddy.

Figure 18b shows these same features from another angle and how eddy currents form behind tetrahedrons in a low pressure zone beneath the rising winds. These are, in effect, destructive interference troughs behind the constructive peak of the wave pattern as winds undulated across the ground.

Figure 18a. Shock waves are green; wind direction, blue; destructive interference, orange; and tornado, violet.
Figure 18b. Shock waves green; wind direction, blue; wind eddies and tornado in violet.

Stepping back to look at the entire heart-shaped circuit domain in Figure 19; blue lines trace the ground level jet stream winds, violet swirls indicate where tornadoes made definitive features on the ground, red “x”s are discharge patterns, and the green areas are where the thunderstorms down-drafted to the rear and rear flank of the storm (also Figure 20). The two lakes are where the circuits connected to ground deep in the Earth, leaving a distinct “V” shaped land form between them forming the base of the “heart”.

The top of the heart is an accumulation of positively charged matter swept there by winds in-flowing to meso-cyclone updrafts, and the bottom of the heart is a negatively charged basin swept clear by down-drafting winds. These are the anodic and cathodic sides of the domain, neatly separating the top and bottom of the heart. There are several other symmetries and heart analogies hidden there.

Figure 19. Laramie Mountains wind flow pattern. Blue lines are ground wind paths, Violet swirls are tornadoes, Green outlines storm downdrafts. Two other “X” shaped discharges are shown to the SE of central discharge.
Figure 20. This basin is the center of down-burst winds from the meso-cyclone. Note the massive erosion and deep, wind cut canyons.

This would have been a horrible place. The discharges blasted negative ions and free electrons away in arc blasts, while drawing positive ions inward. The velocities, temperatures and densities of the winds differed, their dielectric properties differed, their charge densities differed; and they segregated, with the positive inflow hugging the ground, accumulating dust that adhered to the statically charged land. The drag of the winds covered the land with blankets of dust, layered like fish scales, hardened by sonic pressure and electric currents that snapped and crackled everywhere.

The clouds roiled in whirling updrafts overhead. A squall-line of heavy thunderstorms formed in mirror image to the chaos on the ground, spitting lightning in carpet bomb fashion that would have made the clouds glow. Rain fell in torrents of mud and rock. Supersonic winds scoured the ground, in-flowing to biblical whirlwinds, and sonic shock waves reverberated in electrified sheets of plasma current; the entire atmosphere surrounding the storm patterned in the shock-diamond herringbone of flashing, ionized shock waves.

Lightning discharge blossomed like acne, leaving pinnacles, dikes, craters and domes in regions of high tension. Winds stirred around these discharges, disturbing the ambient winds into transient cyclones that left hardened dunes as monuments. And the winds reached supersonic speeds patterned by shock waves that embossed the land with triangular and polygonal wave-forms.

At the time they were made, with all the violent turbulence, heat and electric currents, the mountains likely resembled not so much hard granite, but puddles of hot jam, squished into form by wind and mashed by an electric fork.

Figure 21. Laramie Mountains.

This whole mountain range is direct and unequivocal evidence of electric formation. Conventional means of uplift, faulting and erosion requiring several eons of disconnected events could not, by any reasonably statistical probability produce phase diagrams 15 miles across the face of the earth with induced current paths shaped by magnetic field lines.

The features of these mountains are coherent only when recognized as the result of electrical circuits in the Earth. Each ridge line and canyon, every hill and dale, can be tied to a sequence of events that occurred at one particular phase in Earth’s evolution involving extreme electrical stress on the planet.

Conventional science can’t explain why any two of these features coexist, let alone demonstrate their disjointed theories empirically, or model them with any real plausibility on computers. But you can make discharge patterns like this with some wire and an AC power source. Or, as I have done, bring two out-of-phase plasma balls into contact.

I simply powered one plasma ball with AC current and one with DC, so it produced and in-phase/out-of-phase sequence as the AC side alternated. Between the two balls, the sparks joined and spread with each pulse, like hands clasping, then spreading fingers to push away as energy expended in reactive discharges, perpendicular to the in-phase current flow, just like the “X” patterns in the mountains.

The plasma interaction between the plasma balls didn’t occur at the glass barrier of the globes, as you might expect. It occurred inside the DC ball with the weaker voltage, pushed there by the higher voltage AC ball. Unfortunately, the experiment fried my plasma balls before I could film it. I don’t have the kind of high speed equipment needed to properly photograph it anyway. This image in Figure 21 however, does capture the effect, although I don’t know the circuitry of this set-up.

Figure 22. Tesla coil discharge (white filaments) makes connection with an electrode. Reactive power currents (violet flames) spread in a cone around the discharge.

Figure 21 shows a Tesla coil discharging to an electrode. White filaments of current direct connect to the electrode, while violet plasma flames of reactive power shoot outward in a cone around the discharge. The angle of the cone isn’t 90 degrees, but that is an artifact of this particular circuit and its phase angle.

The Laramie circuit resulted in a discharge along a dipolar alignment between circuit domains, with a capacitive reaction aimed clockwise 90 degrees from the dipolar alignment, and an inductive reaction 90 degrees counter-clockwise, forming a cross, because the domains were exactly 180 degrees out-of-phase.

So, you see the world is a more understandable place than you have been led to believe. To understand it we need to recognize the Earth contains holographic imagery of it’s past charge distributions. We need to recognize that charge distributions result from circuitry that can be traced, understood and put to experiment and modelling. The information is there to learn vastly more than we know today about its creation. To get the info, we just need to ask the right questions.

Thank you.

Easter Egg Hunt in Laramie Mountains – Part 1

In the final chapter of the Eye of the Storm series I presented Easter eggs – surprise geologic findings that confirmed a theory, or presented astonishing new information about Earth’s electric circuitry. Exploring the Electric Earth is a perpetual egg hunt, because every rock confirms the Bunny is REAL.

Electrical discharges follow patterns and behaviors that yield definitive information about cause and effect. Discharge patterns on the landscape indelibly record discharge events, like a holographic data bank.

Chapters 8 and 9 of Eye of the Storm discussed surface conductive discharges across Earth’s surface that formed the Colorado River and it’s tributaries. The trace of a surface conductive discharge is particularly rich in information, because, unlike a lightning bolt that momentarily sticks on the Earth, a surface discharge has to crawl across the surface, meeting significant impedance, seeking out conductive pathways, expending vast energies transporting matter, while explosively faulting and excavating. It takes time, it’s not energy efficient and it leaves its mark.

A stunning display of a particular type of surface conductive discharge can be found in the Laramie Mountains in Wyoming (Figure 1). Embedded in these mountains are gorges and ridge-lines that literally form a phase diagram of what took place. It couldn’t be more explicit than if God had left his blueprint on the drafting table for all to see. This fifteen mile cross is from a discharge between two out-of-phase circuits.

Figure 1. “X” marks the spot, smack in the center of the Laramie Mountains.

First, however, let’s consider the geometry of a surface conductive discharge. Each discharge branches out in fractal, self similar dendrites, to absorb all the surface charge on the conductive object it’s attached to (Figure 2a) – in our case it’s the Earth. This is diffusion limited aggregation. Each filament of a discharge soaks up charge from a particular domain. The domain is a region surrounding the spark defined by it’s electromagnetic field, from which it sucks charge of one polarity and spits charge of the other polarity in reactive power surges. It does this because it’s not insulated current like we use in electrical systems.

Filament domains cover every square inch of solid land on the planet. We call them watersheds, because they serve to collect rain waters into river channels, but that’s a consequence, not a cause. The Earth once crawled with electrical discharges. This should be self evident in any theory of planetary formation. In consensus theories, planet and comet collisions would necessitate big sparks. In Electric Universe theory, sparks are already acknowledged. Why consensus science doesn’t look for evidence of electrical discharge is evidence they don’t ask the right questions.

What is interesting – the big Easter Egg I’m getting to – is that domains cross and the filaments interact. Giant sparks result. The interaction we’ll investigate created a landscape that can only be explained electrically. The statistical probability of consensus theories doing it is nigh impossible.

Domains don’t usually cross, because skin effects occur between domains that keep them segregated as if by a membrane (Figure 2b). But they can cross and interact if domains are out of balance. An over-voltage in one could make it aggressive and overcome another. Depending on phase disparities, this can be a gentle hand holding connection, or it can be an explosive punch. We will look at one of the explosive kinds.

The Laramie Range – Shot Through The Heart

The annotated image in Figure 3 shows the area of interest, circled in violet, including the Laramie Mountains surrounded by green and red circles. The Laramie’s are part of the Continental Divide as it cuts through south-eastern Wyoming. The circles denote the major streams flowing from the mountains. Green are streams flowing to the North Platte, and thence to the Missouri and ultimately the Mississippi Valley and the Gulf of Mexico. Red are streams that flow to a sink in the basin west of the mountain range. The sink forms the Seminoe and Pathfinder Reservoirs, also circled in red west of the mountains, and the North Platte River forms the Glendo Reservoir on the opposite side, circled in green.

The high basin drains around the mountains in two flows (yellow connections). North Platte runs near Casper Wyoming around the north of the mountains, and the Laramie flows from Medicine Bow to Fort Laramie through a pass to the south of the range. The overall structure is shaped like a heart, with the mountains filling the upper half, the basin filling the lower and the rivers acting as arteries and veins.

Figure 3. Laramie Mountains circuit domain forms a Heart.

“X” Marks the Spot

The distinctive yellow “X” in the center of the range in Figure 3, is a discharge pattern that occurred when the North Platte filament of the Mississippi discharge met a separate domain with a different phase. What you see is literally a natural phase diagram that records the phase angles of the discharge. The discharge took place because the Missouri circuit was an AC current that made connection to a ground current in the basin, and sparks shot between the circuits where their domains came together. The Laramie Mountains formed as a consequence.

The discharge adopted an “X” pattern where it made connection, with east-west branches vectored along the electric field denoted by the dotted red and green lines in Figure 3. The electric field is the dipolar alignment between the lakes. The lakes, or the depressions where these lakes are, were created in the same discharge event that met at the crux of the “X” and sent reactive discharges rotated at 90 degrees to the originating spark between the circuit domains. The discharge is much like the “resonant frequency discharges”, discussed in Chapter 8 and 9 of Eye of the Storm, which created the major 180 degree (or nearly so) branches of the Colorado (Figures 4).

The geometry is different, an “X” instead of a “T”, but that is because the “X” is a resonant discharge between two existing circuit domains, whereas the “T” is a result of a single circuit bifurcating.

The bifurcating discharge meets critical resistance due to a build-up of stray capacitance that resonates the circuit, increasing frequency and therefore resistance until the current is stopped, causing it to explode in reactive discharges 90 degrees to either side of the original current, as shown in Figures 4.

The “X” is produced by two out-of-phase circuit domains coming together. The Missouri circuit is an alternating current, whereas the basin circuit is a direct current-to-ground. The two circuits go in and out of phase with each other as the AC current alternates. This makes a connection, then a discharge. The discharge is totally in the reactive power mode, because the out-of-phase circuits are 180 degrees out-of-phase and that has the same effect as resonant discharge, raising resistance to infinity and forcing the current out sideways at 90 degrees.

The first case is like putting a finger over the nozzle of a hose and forcing water to spray out sideways, 90 degrees to the direction of the nozzle. The second case is like having two hoses aimed at each other, and where the streams impact, flow sprays out sideways. In one, the blocked water pressure changes flow direction and makes a “T”, and the other, two flows impact and the pressure changes flow direction to make an “X”.

The reactive discharge dissolves the voltage differential between circuits by expending their charge – the entire accumulated charge in the Missouri circuit, in this case – in an explosive “X” shaped spark.

It created what astrophysicists call “magnetic re-connection”. Astrophysicists don’t recognize electric circuitry in space because, in dark mode, current doesn’t emit radiation they can detect. Since they can’t see it, their reductionist minds can’t make the intuitive leap to circuitry, but they do detect the magnetic flux that results. They invented the term “magnetic reconnection” in lieu of an explanation, because they can’t fathom the simplicity of two out-of-phase circuits coming together to make a spark.

Figure 5 is a .gif of “magnetic re-connection”. The moving lines are magnetic field lines – the things astrophysicists think are re-connecting – but they are actually the magnetic field lines generated by current flow oriented along the dotted lines. Their model only recognizes magnetism, so the dotted lines are just separators of the magnetic field in their .gif. The big yellow arrows pointed inwards and outwards in different quadrants of the “X” are the vectors of electric current induced by the changing magnetic field.

In the Laramie’s, induced currents were expressed in the atmosphere by plasma winds. Plasma winds drew to the crux of the discharge at ground level in the top and bottom quadrants, and blew outwards at high level like an anvil cloud in the right-left quadrants. The winds lifted in a vertical updraft over the center of the “X”. But even more astounding is the effect that magnetic fields and reactive currents had shaping the entire basin and range structure. The landscape is a 3-D photograph of what happened.

Figure 5. Magnetic field lines in “magnetic reconnection” event.

To appreciate what took place, the three dimensional nature of the circuit domains needs to be recognized. Charge diffused across the ground, as well as through the ground and into the sky. Capacitance between the Earth and sky forced mirroring currents in the atmosphere, stirring a violent storm system. Think of it as a local squall line of thunderstorms raging over the mountains at the time they were formed and while the ground discharge took place. The central updraft over the “X” formed a huge mesocyclone, flanked by smaller thunderheads to either side. Most of the energy of the discharge went straight up, into the meso-cyclone, pulsing it with energy. The wind paths to be described are ground level winds, shaped by the electromagnetic field at the planet’s surface.

The combined effect of the discharge at ground level, it’s magnetic field and the resultant plasma winds are shown in Figure 6. The discharge makes the “X” pattern, shown in red. The magnetic field lines (blue) are as shown as in Figure 5 in the pattern of “magnetic reconnection”. The wind vectors are shown in yellow.

Figure 6. Laramie Mountains – discharge currents, magnetic flux and induced winds.
Figure 7. Wind cut valleys surround the discharge “X”, patterned by capacitance and magnetic induction.

Figure 7 shows how these winds patterned around the “X”. The winds in the NE and SE quadrants flow parallel. In the NE, they cross magnetic field lines perpendicularly, flowing straight to the crux of the discharge. These winds were narrow jet streams that cut valleys as shown in Figure 8.

Figure 8. Parallel wind cut valleys in the NE quadrant. Wind lifts into central updraft at upper end of valleys where it intersects the discharge.

Jet stream winds leave valleys like shown in Figure 8, with broad rounded, or “V’ cut bottoms carpeted with silt, but no inner gorge. They may have superficial, meandering stream erosion, but not a deep, straight, inner gorge. We’ll examine more wind cut valleys later, but first let’s distinguish between wind cut valleys and the discharge blasted canyons that form the “X”.

The path of a discharge leaves canyons rough cut, with a deep inner gorge like shown in Figure 9. This is the Platte River, or north-eastern arm of the “X”.

Figure 9. NE Quadrant (Platte River side) discharge canyon has deep inner gorge.

The sides of the discharge canyon indicate arc blast which exposed granite tetrahedrons. On one side the tips of tetrahedrons (leeward side) jut out, exposed and broken (Figure 10b), whereas the other side shows the flat faces of windward tetrahedrons (Figure 10a). This indicates the mountains were laid down by a cross-wind before the discharge occurred and blasted this canyon. So, the mountains resulted from an evolving storm system that changed it’s winds, surely due to this big spark. Note the cross-hatch patterns of shock diamonds in the canyon flanks.

Figure 11 shows NE quadrant wind-cut valleys between north and east arms of the “X” discharge. Note the many transverse striations of cuts and gorges and how they change orientation between arms of the discharge. Striations come from deposition layers shaped by shock waves transverse to winds, and secondary discharge filaments between circuit paths.

Winds drew into a central vortex at the crux of the discharge, drawing dust into a pile to form the mountain. Therefore each quadrant of the discharge displays shock waves oriented by the wind in that quadrant.

Secondary discharges are from short circuiting sparks between current paths, like sparks between live, bare wires that are too close together. There is one secondary discharge visible that makes it’s own “X” pattern, center right in the image. This is a mini discharge between the AC current in the big “X” and the static build-up of charge in the wind cut lane due to the plasma jet stream. It’s essentially an AC to DC connection that makes a perfect 90 degree reaction just like the big “X”. It’s even in the same orientation – repeating, self similar forms.

In the next article we’ll return to look at more wind-cut valleys in the Laramie Mountains of Wyoming, and how they were shaped by electromagnetic forces.

Thunderblog: Eye of the Storm – Part 6

The Great Red Spot

In Part five of this series we looked at “boot print” craters and found there are cyclones raging on Jupiter right now that can explain them. Shock wave patterns in the crater rims provided confirming evidence. We also looked at California’s mountain and valley structures and correlated those with a storm on Jupiter that displays in great detail the very same features. The examples we’ve looked at point to one significant observation: that fractal forms associated with the processes of charge diffusion can be found in both geology and weather.

Why geology and weather should match really isn’t hard to understand. Capacitance between Earth and sky are responsible for that, forcing charge to diffuse through each layer in mirror image. And that should suffice for an answer if our atmosphere were considered a plasma; charged particles responding to Earth’s spherical capacitance would make sense. But Earth’s atmosphere isn’t considered a plasma. Neither is Jupiter’s for that matter. Where are all the charge carriers?

The answer isn’t in particle physics. It’s in the molecule of water. Water is the charge carrier – the electric wires of the circuit. Water is bi-polar, and so adopts polarity in an electric field. This produces something called “bound current”. Unlike a current of free electrons and ions, a bound current is carried by a bulk material that can be polarized or magnetized. An example is a ferro-magnetic fluid that takes structural form in response to magnetic fields. Water is an example of bound current due to polarization of the water molecule.

Water also changes phase: from vapor to droplet to ice crystal, all in the course of a weather cycle, which changes it’s electrical properties. And it’s self ionizing, readily shedding electrons to generate plasma.

DSC02073

A cold plasma is only partly ionized. A few free electrons and ions floating about. But magnetic fields are created with any moving charge and magnetic fields influence their motion. And water follows, because it polarizes and acts like a big fat charged particle, making clouds into conduits of current generating a stronger magnetic field. Star-like filaments and concentric rings form in thin cirrus of the upper atmosphere. Condensate filaments make turns and shoot tendrils at 90 degrees, crossing other filament paths and interfering in herringbone patterns. These are drift currents, responding to the pull of far-field potential within that layer of strata.

file-20180320-80634-1l34xxcfile-20180320-80634-70c377SAM_0154SAM_0150SAM_0125SAM_0101

Closer to the ground, fat water clouds form cellular structures, often in tetrahedron shapes, which amplifies waters polarity to a macro-scale. Watch puffy cumulus gather for a storm, ultimately knotting into a torus around up-welling winds to birth a meso-cyclone, and you are seeing a fractal, electromagnetic structure of Nature at work.

SS1

Airborne dust, pollen, aerosols and dander cloud the air close to the ground and react between surface and sky to form a charged sheath, polar opposite to the water clouds in the sky. Higher up, where ice forms, wispy cirrus change polarity again. The result is multiple layers of charged cold plasma between the ionosphere and Earth’s surface.

The sky is electric, but consensus science doesn’t seem to recognize that. They will say there is no evidence of charge densities high enough for plasma. That distances are too large to create double layers and develop capacitance. But they don’t recognize water’s role, and frankly, they aren’t looking. They are looking for answers to their preconceived notions about carbon’s minor role in all this, and don’t even ask the right questions.

Just look at the clouds and what you see is an electric-field writ large across the sky:

DSC00423imagestorTC_CebileDSC02070

It really couldn’t be more obvious. Just ignore the scientists and use your own noggin. It’s better if you’re not institutionally taught to ask the wrong questions.

Then take a look at Google Earth, and compare to NASA’s images of Jupiter. You will see all the patterns of Jupiter’s storm clouds reflected in Earth’s geology.

Mountain ranges, and desert dunes carry the shape of the winds that formed them. Rising columns, violent down-bursts, precipitation, whirlwinds and lightning brushed the land like a painter and left indelible brush stokes.

pia21973 (3)_LIcurl2curl3curl4

The similarity of shapes and weather comes from internal circuitry of the planets. This means that Jupiter and Earth are very similar in that regard. Repeating forms at different scales is one proof of a fractal process.

Fractals emerge naturally in chemistry, fluid dynamics and biology, but the process that defines them all – the common denominator – is the process of charge diffusion in an electromagnetic field. It manifests not only at the particle scale, but the atomic, molecular and cellular scale, and produces fractal forms at the macro-scale because they are made coherent with electro-magnetic fields.

The Eye of the Storm

Now let’s raise the voltage a bit and see what happens. A correlation between the Colorado Plateau and the Great Red Spot (GRS) has similarities of such complexity and detail, it seems absolutely surreal. Inflow to the GRS appears in two sinuous lanes of rolling winds that correlate with the mountain ranges in the Pacific Northwest.

Inflownorth

jupiter-red_00319181 (2)

The Great Basin Vortex

These snaking flows of wind feed a giant thunderhead that occupies the lower third (in the image shown) of the GRS, where white anvil clouds obscure what’s below. Such a meso-cyclone careened over the Great Basin, extending it’s entire rotating wall-cloud clear to the ground. The Great Basin was formed by rippling waves of dust laden winds spun beneath a 100 mile-wide funnel, lashed by torrents of rain.

jupiter-red_00319181 (3)

The parallel rows of basin and range mountains that march like rippling dunes across Nevada were laid transverse to the wind. In the annotated image, wind-fronts are denoted by the dark blue lines. There is an “S” shaped range at the inflection point where the in-flow winds bent to the rotating updraft.

WM2_LI (2)
Inflow, rotation, rain curtain and down-drafts portray the exact footprint of a thunderstorm.

The blue and violet lines denote the wind direction, exiting right (east) at high altitude over Provo, Utah where it made no mark on the land – until it water-fell on the other side of the shear zone that formed the Wasatch Range, spilling a violent downdraft into the Uinta Basin.

Another, larger flanking downdraft flows south over the Wasatch shear zone, and spills down to form the Mogollon Rim, the southern extension of the Colorado Plateau arcing south-east from, roughly, the Kiabab rim of the Grand Canyon to the Gila River in New Mexico. The wind formed rim is intermixed with volcanoes.

Curiously, Nevada’s mountains display wind-formed tetrahedrons in the opposite direction than expected, given the counter-clockwise rotation of the GRS. I drove through Nevada (twice) to confirm what Google Earth showed, because this was a case where land forms disagreed with my expectation. The best explanation for this, given everything in context, is that ground level eddy winds rolled beneath the meso-cyclone rotation like roller-bearings under a spindle.

Eddy winds22

This was a wet, rotating meso-cyclone, carrying considerable moisture which precipitated out and evaporated forming salt basins behind ranges, and culminating in a rain curtain over what is now the Great Salt Lake and Bonneville Salt Flats.

The long, linear mountain ranges of the Great Basin are in many cases windswept dirt. Hard rock, which indicates heat and recombination of ionic matter is absent, or minimal in many cases which indicates low density lightning in this region. The triangular faces of shock wave reflections earmark wind direction. Often, no triangular shock features are present, indicating subsonic flow, so many hills take a recognizable sand-dune shape.

DSC01170DSC01189 (2)DSC01122DSC01209DSC01103 (3)DSC01784DSC017982

The Wyoming Vortex

Where the thunderstorm down-drafted to the northeast, it landed in the Uinta Valley and joined the ground winds of another rotation. Actually, it’s two primary rotations that suck wind from the north to form enormous pressure ridges perpendicular to the wind direction: the Wind River and Uinta Mountains.

The mountain ranges formed as lightning arced to ground and charge diffused across the land in channeled currents, which formed dikes. Dikes are walls of rock formed from the country rock fused together, and often display troughs alongside where material sucked to the current.

WMinflow3
Wind River Range displays shock-wave tetrahedrons on its northern flank.

WMinflow1_LI (2)
Tetahedrons make clear the direction of the wind

An example is the Teton’s, where Grand Teton itself is a lightning generated fulgurite surrounded by smaller fulgurites blanketed with wind driven dunes. The Teton fulgurite extended a dike to the south which collected dust against it, which drew more lightning to it, creating a mountain lobe.

DSC00532
Grand Teton shrouded in lenticular cloud.

DSC00511
Dikes formed by channeled charge diffusing away from fulgurites provides anchor for wind blown dunes to form.

Wind piled material against dikes to build a mountain lobe, and leave one flank patterned with the sonic shock of the wind. Winds deflecting horizontal to vertical left ruler straight ridge lines of tetrahedrons where shock reflections patterned diamond shaped regions of expansion and compression.

WMinflow3_LI
Wind River lobe with shock-front and wind direction.

The wind was pulled by twin whirlwinds created by a grounded current loop. It’s footprint is a dome and crater pair. Dome and crater pairs are created by what I call a coronal loop, because electrically it’s the same as a prominence on the Sun. It’s a ring current coupled to the land, and wind sucks up one side in a meso-cyclone that leaves a dome, walled by inward pointing shock-wave tetrahedrons. The wind loops from the thunderhead anvil to feed the center of a down-drafting cyclone, the footprint of which is a crater with outward pointing tetrahedrons.

images009
Two thunderstorms feed a cyclone (center) due to grounded ring currents. These updraft/downdraft sets form dome and crater sets and pairs on Earth.

This pair is squished into almost polygonal shapes because it’s pressed between larger rotations. The Wyoming Vortex is the smallest of three primary vortexes of the larger multi-vortex storm in the GRS. It isn’t apparent in Jupiter’s clouds, but I suspect it’s there under the anvils.

WMinflow5

WMinflow1_LI (3)
The jet-stream wraps over and under itself in three dimensions like rope in a knot, forming a dome on the land, and then a crater. It is a dome and crater pair created by a tight coronal loop.

WMinflow1

Kinky Mexico

From the south, hot dry winds scorched across Mexico and the American southwest with counter-flowing winds. Along the turbulent shear zone between, kinks appear in the Sierra Madre Oriental, where north flowing jet streams mixed with a south flowing stream that formed the Sierra Occidental and the alto-Plano in between.

The kinks in Mexico’s cordilleras match remarkably well the kinks of turbulence where inflow and outflow winds mix adjacent to the GRS. That’s probably an understatement. There are details here to fill a book, but take a close look on Google Earth at these kinks to see some amazing wind and shock wave features.

mexipep1Mexkink3

Mexkink4
Features of the Mexican Kinks

Colorado Plateau and the Eye of the Storm

We looked in an earlier episode at the overall morphology of winds in the very eye of the GRS and the Colorado Plateau. Let’s take an even closer look.

GRS1_LI

The ‘eye’ is a multiple vortex cyclone, which displays a complex system of coronal loops that twist the wind into a crocheted doily pattern.

There are several paired updraft domes and downdraft craters centered on the Colorado Plateau and Rocky Mountains. The most distinctive is the San Rafael Swell in central Utah.

The Swell is ringed by the explosively charged, dense region of recombination and magnetic pinch known as the San Rafael Reef, where rows of dragon’s teeth – tetrahedral monoliths of hard, fused sandstone – provide evidence of a shock wave at the boundary of the updraft.

dsci0474

The Reef is the rim of an updraft dome formed beneath an intense coronal-loop that raged electrical havoc on the land at the sharp end of the storm. The dome behind is shaped like one lens of an eyeglass, the other lens an inverse copy made by the downdraft of the same loop.

UDSR1
San Rafael Dome is electrically etched, or sputtered by an intense electric field in the eye of the storm above it. Purple indicates wind-front of the San Rafael Reef. Green outlines shock front of updraft exhibited by triangular buttresses. Red indicates major lightning.

CL1
Google Earth – San Rafael Swell is northern lobe. Downdraft crater is mirror image outlined by a tributary of the Green River – all a consequence of electrical circuits.

NA15
The San Rafael Reef discontinues at the “bridge” between the ‘spectacle’s’ lenses. Capitol Reef forms a continuation of the sinuous wind-front on the backside of the downdraft crater.

The downdraft crater has a central peak of lightning struck mountains where material drew up in winds generated by the return stroke of the lightning. The rim of the crater forms Capitol Reef, where more monolithic tetrahedrons display wind direction and Mach angles pointing outwards.

SAM_0379
Capitol Reef is the shock front of down-burst winds surrounding a crater.

SAM_0380
Monstrous, multi-layered tetrahedral buttresses splay outward from the crater to form Capitol Reef.

Another example of an updraft dome is Monument Valley, Arizona. It’s shark’s teeth rim is formed by inflow winds, expressed in the triangular sandstone layers of Comb Ridge.

kayenta12
Comb Ridge

kayenta2
Complex super-sonic wave-forms – Comb Ridge, Arizona

ssresonance
Complex super-sonic wave-forms – laboratory.

The interior of the dome is the sputtered remnants of lightning diffused mesas and pinnacles, preferentially left behind as the landscape around lifted away in the most intense electric-field in the eye of the storm.

DSCI0098
Monument Valley

The downdraft leg of the Monument Valley ring current lies in the bend of the San Juan River, as it passes through the Four Corners region.

Monument1

Annotated to distinguish the features, the same eye-glass shape is evident where this coronal loop connects with Earth, but the shape is skewed to the ambient counter-clockwise rotation of the entire storm system. The downdraft lies at 90 degrees to the updraft because of fractal symmetry – something we’ll discuss more – and the ambient rotation of the eye. Once again, the crater has a central peak of lightning fused mountains, but it’s crater rim has largely been swept away and its face flattened by the press of rotating winds. This is “ground zero” for the eye of the storm.

Monument1_LI (2)
The frame is broken, but the lenses are intact. Downdraft at 90 degrees to updraft. In the broader perspective, one can see the circular rotation imprint continues along Black Mesa and defines the eye of the storm.

Note, the San Juan River arcs around the downdraft after it passes through the center of the updraft, just as the tributary of the Green River wrapped around the Capitol Reef downdraft crater and then shot through the heart of the San Rafael Dome. These are the fractal forms of surface conductive discharges, or “arc blast”, and the rivers are part of it (which will be discussed in future articles).

Fractal Elements

A shear zone separates the Wyoming vortex from the eye rotation over the Plateau. At this shear zone, like others, mountains formed beneath welling updrafts. In this case, nestled against the powerful updrafts of the San Rafael Swell and surrounding cyclones, it formed in the shape of an oxbow.

oxbow2oxbow (2)

Here we see one of the wonders of fractal forms. The “oxbow” on Jupiter is a distorted image of the “oxbow” on Earth, with the bows curving in opposite arcs. Seems odd, but Nature is kind of dyslexic. Fractals display rotational and translational symmetries, meaning a shape can be in any of several orientations – rotated at 90, or 180 degrees, or flipped about one axis in mirror image, or translated back-assward. When this happens it doesn’t change the overall structure it’s a part of, and the energy balance remains the same.

Harmonic repetitions also appear. The most striking example lies smack between the updraft dome and downdraft crater of the San Rafael coronal storm loop.

Slide28
This butterfly pattern is from an intense loop of current that created an updraft dome (right lobe) and a downdraft crater (left lobe) complete with stratified triangular buttresses to point wind direction; inward and up, or downward and out; respectively. Each lobe is about seven miles across, whereas the San Rafael Dome is about seventy miles across.

Watch this fractal expression expand in scale. Images are taken along a “z” axis in space from a single point on the ground, at varying altitudes.

20miles_LI330miles_LI (2)1230miles_LI (3)

The fractal repeats, but the center point of each fractal expression stays in place. It morphs in form with emergent effects, but the fundamental circuit relationships remain solidly displayed. They are the same weather patterns we have today, but of super-Olympian scale, as told in countless ancient accounts. We need to start listening to the ancients, because they knew things we don’t.

800px-Great_red_spot_juno_20170712 (3)

Eye of the Storm has presented an aerial view of the coupling of Earth’s atmosphere to it’s surface, so far. Next episode, it’s time to switch and talk about the other side of the mirror – the dark side of the mirror. Below Earth’s crust lie dragons and demons.

Thank you.

PLEASE, DON’T FORGET TO TIP.

$5.00

Thunderblog: Eye of the Storm – Part 5

Large Scale Wind Structures

In previous articles we established a link between the winds of Jupiter and land forms on Earth. In primordial times, Earth’s weather was like Jupiter’s, with raging plasma whirlwinds and segregated electric jet streams that attained supersonic speeds. Close examination of mountains and other land forms shows clear evidence of wind-blown deposition that layered the land, supersonic shock waves that shaped mountain flanks, massive lightning discharges that welded rock, and plasma vortexes that blow-torched the land.

Jupiter’s winds are the result of capacitance between double layers in the atmosphere and the plasma sheath at the planet’s surface. We don’t know what the surface of Jupiter is, but it doesn’t matter – it still forms a plasma sheath – a double layer at the interface between crust and atmosphere. Electric circuits form the winds; by capacitance, inductance and magnetic fields. Surface and atmosphere are coupled by capacitance, and ongoing release of energy from Jupiter’s interior is what stirs the winds.

On Earth, dust particles, aerosols and the water cycle – evaporation, condensation, ice and rain – are the charge carriers, or the “wires” of the circuit. On Jupiter, it also includes ammonia and other species.

Regardless of the difference in chemistry between Earth and Jupiter, charge diffusion in Nature follows patterns. A lightning bolt on Jupiter is like a lightning bolt on Earth. It is a discharge between plasma layers that takes a fractal path as ionized filaments react in feedback with the magnetic field the current produces.

Fractal forms are generated by this feedback loop in any process of charge diffusion. They are not restricted to the Litchenburg pattern of a lightning bolt, but are evident in the helical path of field aligned Berkeland currents, the geometry of electro-magnetic fields, and drift currents reacting to far-field potentials.

So it should be no surprise at all to find the same fractal patterns in Jupiter’s winds as we find on Earth’s landscape, if indeed the landscape was formed by similar winds.

99

Boot Prints

One spade-shaped feature is almost ubiquitous in Jupiter’s turbulence: the ‘boot print’. On Jupiter, the boot print is the down-drafting eye of a cyclone being pinched in the turbulent flow of competing winds. Like a hurricane, it is fed by billowing thunderstorms surrounding a whirlpool, which together forms a piece of a circuit – a ring current between the atmosphere and ground. The shape at the cloud tops is carried to the surface and reflected there, because the structure is a fractal, rotating filament of current reaching the surface.

jupiter-juno-2.png (2)_LIjupiter-juno-3.png (2)_LI

wqod5siuupzkvo4po6ql (8)
Boot Prints!

When Earth’s weather raged like Jupiter’s, Earth was in it’s formative age. The continents were being built, as layer upon layer of dust accumulated on a foundation of volcanic flows. Turbulent cyclones in Earth’s atmosphere produced boot prints identical in form to the boot prints on Jupiter. Boot prints on Earth are literally, the footprints of storms.

iranpep4close1close3iranpep5

Boot prints on Earth are clear evidence of electric formation, because they display exactly what is expected in fine detail. The boot print is the consequence of a down bursting wind – a hot, ionized, super-sonic, dust laden wind aimed at the ground like a blow-torch.

The mountain rim is the pattern of a standing shock wave. The repeating triangular layers on the inner flanks are impressed there by harmonic shock reflections, which channeled the wind at the boundary layer, and trapped dust in the low pressure zone of the triangular wave-forms.

guapo3_LI (2)

Shock waves produce triangular patterns of expansion and compression when a supersonic wind is deflected — like when it hits solid land.

p1l3

003101j.12
Separation Bubble

Just ahead of where a shock wave reflects, a low pressure region forms called the “Separation Bubble”. The separation bubble is in the shape of a tetrahedron, with a triangular face perpendicular to the wind at the same angle as the shock wave reflection – called the Mach angle.

As dust laden, ionized winds pass through the separation bubble, this low pressure region collects dust like a vacuum cleaner, and piles it in triangular layers. Therefore the rims, or mountains surrounding a boot print crater display these triangular layers.

PakistanLayersAsia6expfaniran8Asia 7Astroiranradial3Asian 8

If a down burst wind strikes at an angle, rotates, or its mass flow is biased to one side, it will affect the shape of the crater it forms. Boot prints are often accompanied by a feature called a Prandtl-Meyer expansion fan. It is a series of standing shock waves that form linear rays of compression and rarefaction where the wind strikes and reflects off an object. This pattern implies the boot print is the result of an obliquely striking wind that rotated.

close2

If you have ever watched tornadoes, you probably noticed they are rarely perfectly vertical. They contact the ground at an angle, and the rotating wind is lifted to one side, and grinds against the ground on the opposite side. That is precisely what has happened here to produce a boot print crater with an expansion fan.

union_city_oklahoma_tornado_mature

This single example is proof of my theory. Anyone with a supersonic wind tunnel can produce a Prandtl-Meyer expansion fan, tetrahedron shaped separation bubbles and triangular harmonic reflections – it’s been done countless times. But show a way to produce all of these together in a large scale coherent form by tectonic uplift, seismic vibration, slip faulting, erosion, or any other conventional geophysical means. Can’t be done. It is uniquely the result of supersonic shock. Nature provides rational, obvious proof, without need for computers or numeric models.

The pattern is not vague, like Jesus on a piece of toast. It is confirmed in every detail. The correlation is not only visual similarity, but also causation – vertical high speed winds, electrically charged and shaped by electromagnetic fields. Proof of the winds of Jupiter are in NASA’s data; proof of the ground effects on Earth are under our feet, and in decades of applied science in supersonic shock wave behavior. Proper interpretation of data and some wind tunnel testing would put the issue to bed.

But maybe I can do that with this next example.

California

California’s most prominent feature is the San Joaquin Valley and it’s ring of mountains, including the imposing Sierra Nevada mountain arc and coastal ranges. Inside this bathtub, the floor of the valley is a long, flat plain, which at one time was an ancient sea bed.

california1

It was created by a storm like this on Jupiter. So, let’s look at some amazing details.

nasa-juno-jupiter-september-1-001-2-470x310@2x

In this image, I indicate four specific areas we’ll discuss.

one234

Area 1 – Mojave Desert

This almost perfect triangular plain of high desert is demarcated by the straight line of the Tehachapi mountains to the north, and the straight line of San Gabriel mountains to the south, which also, by the way, aligns with the San Andreas Fault.

WMinfow13

It correlates to the region of low level winds, tinted blue, at the cusp of the oval storm rotation on Jupiter. These winds are sinking winds – that is they are pressing against the ground in a Venturi effect as they speed around the cusp of the storm. The yellow-brown ring of the storm is a rising wind, forming what is essentially a continuous ring of thunderstorms. The sharp triangular demarcation between desert and mountain is the shear zone where shock waves formed between the low level horizontal winds and the rising winds of the rotating storm.

maxresdefault2 (4)WMinfow12

th (62)_LI
Brown denotes high level rotating winds, blue are ground level winds. Red indicates the San Andreas Fault.

As these winds rounded the corner into the Venturi, they accelerated, gouging the deep Owens, Saline, Amorgosa and Death Valleys. Separating these valleys rise eleven thousand foot ridge lines of the Panamint, Darwin and Amorgosa ranges. They formed as sastrugi, parallel to the jet streams in low pressure interference zones between the laminar jet streams.

Lightning in this region was imposing. A plasma intensifies in a shear zone, meaning it  generates ion content due to the shearing and extreme temperature and pressure differentials. Shearing supersonic winds bounce shock waves between them, generating high current density in jet-streams that extended for thousands of miles. Lightning discharge from these plasma streams focused on the piling mountains below with the capacity of a thousand mile long thunderstorm being continually fed new energy.

The current dumped in the strike zone didn’t simply flash a split second, here and there, but arced continuously, diffusing through the land welding granite from dust and sand. That is why the Sierras, in this southern portion of the range, have the most impressive granite structures: Yosemite, Mt. Whitney, it’s neighboring peaks, and the Domes. The granite of the Sierras lies atop sediments, which implies the storm(s), by either wind or tsunami, brought layers of dust long before lightning began to strike.

Area 2 – Coalinga

Coaling Station “A” was it’s original name. Coalinga, as it’s called today, is an oil patch town. The foothills that surround it are oil fields – anticlines of shallow sandstone saturated in heavy oil. Similar anticlines flank the western side of the San Joaquin Valley, from Coalinga to the end of the bath tub at Bakersfield. These anticlines compose some of the largest oilfields in North America.

What created them was like this turbulent region in Jupiter’s clouds. The colorized image from NASA shows a crab-claw cloud structure, with high level clouds in yellow, and low level clouds in blue and black. There are several tornado rotations along the boundaries of opposing flows. There are also deep, dark, linear filaments.

Tornadoes.

maxresdefault2 (2)one22

Now correlate the dark filaments with the deep cut, linear valleys near Coalinga. The dark filaments are ground level jet streams, which are what formed these valleys by preventing dust from depositing. Follow the filament in Jupiter’s cloud and it ends in a tornado. Follow the valleys near Coalinga and they end in hills with spiral features. In other words, the filaments are jet streams hugging the ground, cutting beneath the storm clouds to feed a giant tornado. Fascinating isn’t it?

Abacachu
Jet-streams and tornadoes near Coalinga

DSC03672
Linear jet-stream cut valley near Coalinga

california8_LI
General wind patterns near Coalinga

Blue lines in the wind pattern image represent ground level winds, combing across the San Joaquin Valley, and rising into thunderstorms. Yellow represents the higher level meso-cyclone winds which rained dust and rock. The blue winds approach the thunderstorms orthogonally, then rise in the updraft of the storm. Dark blue lines are the tornadoes and ground hugging jet streams.

A drive through the region shows the mountains are wind blown dunes that rise abruptly from the flat valley floor, and display exactly the wind patterns I describe.

DSC03802DSC03825DSC03722DSC03816DSC03380

It seems chaotic – winds criss-crossing in every direction. But it’s not. The overall wind structure is called a Kelvin-Helmholtz instability. It’s a fractal pattern that happens all the time if there is wind shear.

Area 3 – San Joaquin Valley

Look inside the yellow ring of thunderstorms, and see there are dozens of small vortexes. These are tornadoes, or perhaps water spouts, because the San Joaquin Valley was likely a sea at the time.

maxresdefault2 (6)

Among all the tiny whirlwinds is one giant tornado almost in the center of the storm. This feature correlates well with a circular region of the Sierra foothills at the North end of the San Joaquin Valley. If you have ever driven from Sacramento to Lake Tahoe on State Highway 50, past the town of Folsom where I once lived, you have climbed the Sierra foothills that constitute this feature. A distinct swirl is evident in the hills just above (to the East) of Folsom Lake.

Caliswirl-a

The swirl is fed by ground level winds entering the vortex from the left (South), whereas the top level winds in Jupiter’s cloud tops flow in from below (from the West on the Earth image). This indicates differences in flow patterns between double layers due to the rotational symmetry of fractals. Fractal rotational symmetry is when a fractal shape repeats, but rotated by 90, or 180 degrees. This indicates the wind clocks around ninety degrees at different layers of the storm. The same thing occurs in hurricanes and meso-cyclones on Earth, even today.

Area 4 – San Fransisco Bay

Here, you are literally seeing the drain in the bath tub. Follow the dark filaments in Jupiter’s clouds and they converge in a vortex.

maxresdefault2 (5)

Compare the dark filaments on Jupiter to the long, linear valleys leading to San Francisco Bay, and you see the same pattern. The dark filaments are ground level jet streams that scoured the land, while the light-colored cloud tops are thunderstorm anvils raining charged dust to form the mountains.

maxresdefault2_LI (3)

istockphoto-854988282-612x612_LI

Look close at Jupiter’s clouds near the center of rotation and there is a dark “X” shaped feature. Then compare to the Sacramento Delta and you’ll see, the Delta is the top of the “X”. Again, it’s because the dark filaments are ground scouring winds, which in this case scoured the land to a depth below current sea level.

SacDelta1bayarea (2)

I hope these images provide unambiguous evidence of how the Earth was formed. Any one, or two matching features between the clouds of Jupiter and the Earth’s landscape could be coincidence. But overlay Jupiter’s oval storm on California and all seven features depicted here match in both shape and position, and the wind patterns not only look like, but explain the land features. At least they do if you apply electric circuitry, and ignore consensus science.

There is a host of interesting things to learn by understanding California’s true formation. For instance, a whirlwind formed hill in Kern County is full of ancient shark’s teeth fossils. These sharks date to the middle Miocene, roughly 15 million years ago by consensus chronology. I don’t trust consensus chronology, but it does place a bookmark in the fossil and geologic record. Oil sands in San Joaquin date from the Miocene and earlier, except for one shallow Pliocene sediment. The Miocene epoch that formed Shark Hill was likely the last time such a mountain building storm raged over California. But stratigraphy and the fossil record suggests there were many similar fractal storms in earlier epochs.

sharktooth
Shark tooth fossil from Shark Tooth Hill, Kern County, California

Thank you.

PLEASE, DON’T FORGET TO TIP.

$5.00

Sputtering Canyons, Part 3

Previously published at Thunderbolts.info

In Part 1 of Sputtering Canyons, we discussed Arches National Monument, and evidence it was formed by a complex sputtering discharge process. That process involved a thermal spiking, barrier discharge in a layer of wet sandstone.

In Part 2, we looked at how charge and charge depletion disperses through rock by the combined mechanisms of current drift and diffusion. We looked at evidence of diffusion patterns in the landscape and evidence of mechanical shear caused by sputtering discharge.

In Part 3, we’ll look at some secondary effects from electrical deposition and sputtering on the Colorado Plateau. These features involve processes besides sputtering discharge and lightning bolts, however. These features also involved the winds of the storm.

In the primordial, plasma typhoon that layered the dome of the Colorado Plateau, winds were mobilized by the Earth’s electric field. Ionic species of opposite charge were pushed in opposite directions. Positive and negative species segregated into streams of unipolar winds that circled the Earth in bands moving alternate directions.

The electric field gradient was from pole to pole, or at least where the poles are now, so the winds circled north to south and south to north. The effect was the same as the counter-rotating bands of wind on Jupiter. Where they met was the anodic hot spot where super-volcanoes belched ash and flame, and the bowels of the Earth spilled forth molten rock.

Between the super-volcanic maw of Yellowstone and the strato-volcanic cones on the Mogollon Rim sits the Colorado Plateau, where the winds mixed in a plasma cyclone. The meeting of the unipolar winds was the earth-sized equivalent of the Great Red Spot on Jupiter – a sustained and violent storm, charged with electricity and bent by magnetic fields – a storm beyond any Biblical description.

Like Jupiter, the winds screamed at several hundred miles per hour. Mach effects, like standing shock waves and supersonic shear created extreme pressure, density and temperature differentials. Vast updrafts and downdrafts developed, tornadoes spun-up fifty- to one-hundred miles across, and all of it carried electric current.

Where shock waves form, electric current flows. This is known phenomena. The whole idea of an EMP weapon – an electromagnetic pulse that can knock out transformers and electronic systems, destroying the grid and communications, is based on this fact. Explode a nuclear bomb in the atmosphere and it will send out a shock wave. The shock wave carries the electromagnetic pulse that spikes current suddenly and wipes out electronics and power grids.

There is no battery in the nuclear bomb that creates the EMP. The EMP forms naturally in the shock wave. There are several effects that cause this. First, the shock wave is a sharp discontinuity in density. Where the density is higher, of course there is more matter, so a higher concentration of ambient ions are there, naturally raising charge density in the shock wave. The temperature is higher too, so that causes ionization in the shock wave. There is higher pressure, so particle collisions are more frequent, again ionizing the shock wave. And the bomb itself sends radiation with the shock wave.

So all these effects add up to a large electric current in the shock wave, and it is self amplifying. As ionization frees electrons to roam, they knock away more electrons in a runaway chain reaction. The process is related to the diffusion of charge discussed in Part 2, but in this case, the current diffusion is contained by the shock wave. The shock wave and electric pulse are coherent with each other.

Any place a supersonic wind hits an object, or is forced to change vector, or where it shears against winds moving at a different velocity, a shock wave forms. A projection, like a mountain, would create a standing shock wave that creased the wind, and generated current. In a plasma atmosphere, that current would grow very large.

Another feature of shock waves is they reflect. Like any wave, a light wave, an ocean wave; when it hits something, some of it’s energy echoes. When it does, it reflects in harmonic relationship to the wave that made it. Shock waves can reflect off each other, or align with each other and vibrate in harmonic resonance.

Every lightning bolt, every belch from a volcanic vent, sent new shock waves to reverberate through the air and echo from whatever they hit. Every sheet of current in them altered the electric field around it, and the atmosphere vibrated with charged waves, stiffened and resonating with feedback from the energy of the storm.

Some traveled at the speed of sound; while standing waves, reflected from stationary objects exposed to wind, stayed in place. They crossed, interfered and canceled each other. In the chaotic turbulence of the supersonic electric storm, shock waves literally patterned the atmosphere. Because the shock waves carry current, and magnetic fields result, the right hand rule forces waves into a cross-flow pattern with 90 degree angles.

Consider how ocean waves can form a coherent pattern in a cross-current sea, as shown in this photo from Ile de Re lighthouse off the coast of France.

Ile_de_ré2
Ile de Re cross-current – Photo by Michel Griffon

Shock waves formed a similar effect, only carrying electric current. As the layers of the dome built the Colorado Plateau, they scarred the land with these patterns.

DSCI0450
Harmonic reflected shock wave patterns in Utah. Angles at 90 and 45 degrees.

This shock wave fracture pattern is almost universally found in the rim rock and cap rock of sputtered canyon walls, buttes and pinnacles. The fracturing takes the form of parallel joints, or checkerboard blocks. The blocks are sometimes deeply cut and look like broken teeth.

DSCI0179
Electro-sonic shock cuts deeply in monolithic layers.

In other cases, they are straight, evenly spaced, parallel fissures. Razor thin shock waves created the fractures in the cap and rim rock as the dome was deposited, while it was still hot and plastic. Thermal contraction during cooling, and the tearing away of material during sputtering, broke the rocks along the shock induced fracture lines.

DSCI0149
When nature uses a ruler – think electro-sonic shock.

DSCI0150
Shock patterns change between layers deposited by successive winds that cause discontinuity in fissures.

DSCI0148
Shock patterns capped by a layer of un-shocked sandstone.

The same effect is seen in completely different geologic formations – the windblown buttresses on mountain flanks. These images are from Comb Ridge, which is the southern rim of the Monument Valley dome, and San Rafael Reef at the southern rim of the San Rafael Swell. Both are dunes of triangular buttresses formed by the supersonic winds sucked into the storm that formed the domes. The shock waves from the supersonic winds that formed the dunes impressed themselves into the rock.

oShiprock4
Comb Ridge checkerboard shock patterns.

DSCI0067
Triangular flat-iron buttress in Comb Ridge with checkerboard shock pattern.

DSCI0451
Flat-iron buttresses San Rafael Swell, Utah. Note shock patterns on two successive layers, upper left and foreground.

The shock wave currents shatter into harmonic reflections in ever smaller patterns. In formations where extremely high energy was available, such as the hardened plates of flat iron buttresses on the San Rafael Reef, the shock waves continued to shatter, reflect and reverberate down to the smallest scale.

This rock photographed from a flat iron buttress in Utah by Robert Hawthorne, during a field trip following the 2017 conference, shows parallel cuts in rock only a half inch apart.

DSC00984

This rock photographed by the author from another buttress in Utah during the 2016 field trip. It shows the squiggled fractures of a dissipating, shock induced current along the back edge of the buttress. These rilles only penetrate a fraction of an inch into the rock, and really defy any other explanation, unless rock eating worms cut these paths.

DSC00982DSC00981

Another feature related to shock induced currents in linear, parallel formations, are something we’ll call, inverse dykes. A dyke is a vertical wall of rock. It can be free standing, or it can be embedded in a parent rock, like a quartz vein in granite. Quartz veins are caused by very high-current shock waves (which immediately raises the question, how does gold get in them thar veins? But that is a question for a future article.)

These dykes are made of minette, which is very high in potassium ratio, making the rock highly alkaline, or anionic. Which means it’s electrons were sucked out.

DSCI0085
Minette dyke projects from Comb Ridge in background.

DSCI0086
Minette dyke undulates across plains south of Comb Ridge.

They were made by shock wave currents – electro-sonic waves that scored across the land and fused the parent sands into walls of electro-chemically altered rock. They emanate from Comb Ridge on the south side of Monument Valley. And they are coherent with the triangular flat-iron buttresses of the Comb, which were formed by the same shock waves.

kayenta-dikes-2
Blue lines trace minette dykes from Comb Ridge

kayenta-dike
The black dykes align with the Mach angle of the shock wave that formed the Comb’s flat irons.

Inverse dykes are similar wall-like features that were formed by currents that depleted the rock, shielding it from sputter. These upended pancake walls at Arches N.M., Utah were left standing as the lanes between them sputtered away, in the same fashion that preferential sputtering left mesas and pinnacles in the shadow of lightning strikes. Only for these, the diffusion of charge depletion was shaped by electro-sonic shock waves.

You can see they are layered, like the deposition layers of the mesas. Dykes don’t have deposition layers – they actually cut through deposition layers. Inverse dykes have deposition layers because they were part of the dome before it sputtered.

DSCI0241
Inverse dykes of deposition layers undulate through sputtered canyons in Arches N.M.

Another phenomena related to the whole sputtering process is gaseous explosions. It primarily occurs during dome deposition, when hot sand rains down, accelerated by the electric field under the eye-wall of the storm, to be pressed into a layer on the dome.

After deposition, but while the rock is still hot and plastic, still popping and sizzling with excess charge, volatile mixtures accumulate in pockets. The pockets migrate through weak joints, dykes and veins in the rock, to explode near the surface, leaving holes from bubble bursts. Remember, the veins and joints are current carrying, shock induced features, so they dissipate heat and current as they cool.

DSCI0442
Each hole can be associated with a fissure, or seam in the rock.

DSCI0199
Tiny bubbles erupted along a fracture line, bottom left and center right.

DSCI0393
Hand sized bubble bursts.

It’s very similar to the heat spiking bubbles that created Arches, N.M., but this occurs during dome deposition, not sputter. The gases are aided, or caused, by residual current in the rock escaping after it deposited.

It can leave perfect bubble imprints in dense, hardened rock. Look carefully at the bubble imprint lower left of the arch. It has a “Y” shaped ridge that is the precise symmetric pattern molded into the rock that three bubbles connected would present, because they have to equalize pressure across their membranes. This is not water erosion. This is bubble explosion.

DSCI0680
Look for the Y-shaped star in the lower left-most bubble impression.

DSCI0612
Interesting flash-over patterns in the broken rock face near the hole causes patina of ‘desert varnish’. Looks more like drool from the lip of the bubble burst.

They also explode outward in large jets, off-gassing the hot fresh mountain as it settled and cooled, leaving ‘yawning throats’ like this.

DSCI0510
Blehhh … Pardon me!

The light at another time of day on the same ‘yawning throat’ in the San Rafael Reef, Utah shows the band of white crystalline dyke that the gasses migrated through. The ‘tonsils’ are a blade of the rock dyke.

DSCI0619
A gas jet blew out along a dyke, which forms the cleft in the roof of the cavern.

This slot canyon in the San Rafael Reef was cut by a discharge of current and off-gassing. The discharge was powerful enough to cut the narrow canyon, implying it was an arc mode discharge.

dsci0016
Looking out the slot canyon.

The throat of the discharge is a hole about 3 feet in diameter. It is choked with an effluvia that followed the discharge and solidified as it dripped from the throat. There is a vertical dyke in the rock aligned with the hole, which can be seen as the white streak in the vee-notch above the hole.

dsci0031
Looking into the slot canyon to throat of discharge.

The throat is completely choked with the effluvia. The effluvia is black and textured much like minette, found in lightning generated features elsewhere in the region.

dsci0007
Throat of the discharge that cut the slot canyon plugged with solidified effluvia.

A runnel of the black effluvia drips from the throat, and the walls near the throat are splattered with a white substance.

dsci0011
The throat is plugged with solidified

Taste testing the white substance indicated an alkaline bitterness. Being in a National Park, samples could not be taken, so no further analysis is available.

dsci0021
Curious research assistant sniff tested and reported a ruff scent.

Off-gassing bubbles can be quite elaborate in volatile flows of foaming minerals. This carbonate rock fizzed like seltzer before it suddenly phase-changed to solid leaving exquisite bubble molds. Such sudden phase change implies an instantaneous electro-chemical process due to electrical discharge and recombination.

DSCI0350DSCI0349This image shows why off-gassing bubbles are part of deposition, not sputtering. The bubbles are in the untouched surface rock above, while the scalloped break in the rock (from a cupping spall caused by sputtering) has no holes. The holes were already there when the canyon was sputtered, and are only a near surface feature caused by off-gassing.

DSCI0637
Bubble holes in native rock above spalled section occurred at deposition.

While theory and conclusions presented here are the sole opinion of the author, appreciation to the researchers who spent hot, grimy hours exploring Canyonlands to obtain photos and data is due. Researchers Larry White, Bruce Leybourne, David Orr Steve Cash and Ginger endured extreme heat, dangerous roads, treacherous heights and fine sand in their food, examining the wonders of Canyonlands, Utah for this article.

 Thank you.

Quick Tip

Please help support The Daily Plasma.

$2.00

Sputtering Canyons, Part 2

Also published at Thunderbolts.info

In Part 1 of Sputtering Canyons, we discussed Arches National Monument, and evidence it was formed by a complex sputtering discharge process. That process involved a thermal spiking, barrier discharge in a layer of wet sandstone.

In Part 2, we’ll take a broader look at some regions on the Colorado Plateau where similar sputtering discharge processes took place.

One of these is Monument Valley. Monument Valley was formed by sputtering discharge that almost completely etched a layer of the original dome away. What is left are the lonely pinnacles and buttes iconic to Western movies.

DSCI0098
Monument Valley, Arizona

The reason these pinnacles and buttes are left standing, while the same layers of sandstone etched away around them, is due to preferential sputtering. Preferential sputtering is normally associated with sputtering an alloyed metal where one element in the alloy sputters more efficiently, eroding away faster than the other alloy metal.

In Monument Valley, the buttes and pinnacles left standing were portions of the dome that resisted sputtering because of a difference in charge density. The part of the dome that lifted away, did so when the wet layer – the icing in the layer cake – became a charged, hot ionized mud. A sheet of high charge density developed at the base of the mud with an attraction to the clouds above – and like an electromagnet picks up a junk car – the storm’s electric field lifted away the overburden to dissolve in electric winds.

The buttes and pinnacles are remnants that didn’t have the same charge in their wet layer, so they didn’t get pulled away by the electric field. The reason is: they were struck by lightning.

In the dark mode, drifting plasma current that causes sputtering, there is always the potential to spark. Manufacturers are careful to avoid this because it will flaw the finished surface. The pinnacles and buttes were parts of the dome where an arc, or many arcs struck and dissipated built-up charge. Instead, it altered the ground charge beneath the strike zone so the electric field couldn’t pull it away. Therefore, the buttes and pinnacles were preferentially – not sputtered.

In the parlance of the semiconductor industry, the charged layer was doped by the presence of water and minerals, which gave it an excess of electrons. When lightning struck, it depleted the charge and left an excess of “holes”, or the absence of electrons, which cancelled the attractive force of the sputtering discharge.

The evidence for this is manifold. To begin, consider the cap rock formations and spires found on buttes. Butte tops aren’t flat. They generally have something like a step pyramid, dome, or pinnacle on top, which is where lightning discharge was most intense.

Notice, in the images below, the pyramidal caps. The rock below the caps is darkened significantly more than adjacent stone. Not only is there black patina, but there is also more redness to the rock itself in streaks below the caps, with deep vertical fracturing. The charge depletion from lightning, and the subsequent recombination of the most severely depleted zones beneath where it struck, heated, shocked and hardened the rock more in these areas than in others.

DSCI0100DSCI0099The step pyramid structure, or terracing on canyon walls and buttes is another evidence of sputtering. Each sedimentary layer has different compositions of minerals and moisture, differentiating the dielectric property of each layer. The zone of charge depletion under lightning strikes spreads out in a conical diffusion pattern, but the cone is stepped, or terraced, because there is a step voltage across each dielectric layer.

Slide3Where there are towering cliffs with sheer vertical walls, it is because it is a monolithic layer with a consistent dielectric, causing a single large voltage step.

DSCI0103

Where there is very hard rock, the edges are torn in chunky blocks. The flat, smooth breaks are not the result of millions of years of erosion of any type – wind, rain, ice, exfoliation, or flowing water. Any of those actions would have the opposite effect. The rocks have such smooth, flat faces, and sharp, angular, undercut edges because they were broken by mechanical shearing as the neighboring rock was ripped away.

DSCI0112Evidence of shearing is especially evident on monolithic walls. Sharp edged breaks are everywhere, leaving smooth, flat faces, hardly roughened, or rounded by any act of erosion.

Arching fissures are evidence of spalling, where the material tore away in flakes, cupped upward in the direction of shear. The arches often show concentric creases where flakes broke away in smaller sections deeper into the rock. One can see the same type of concentric flaking in broken glass.

In some places the canyon walls have the look of broken glass. In others it looks more like the broken end of a brick of hard cheese. Perhaps a well-aged Parmesan – stiff, dry and flaky, with a low shear strength.

DSCI0147
Upward cupping flakes leave spall marks from shear.

DSCI0143
Cupping spalls where rock flaked during shear.

DSCI0142
Cupping Spalls

DSCI0617
Cup shaped spallation

DSCI0633
Cupped spallation with effluvia spilled from a fissure.

DSCI0185
Big cupping spall inside a spall.

Besides cupping spalls, some surfaces show other evidence of stress fracturing due to shearing force.

2016-08-14 20.11.52
Stress fractures create sharp edged, wavy spalls where rock was torqued as it sheared away.

There is almost always a  thin layer of hardened rock at the interface of each terrace. This is where charge accumulated at the boundary layer of the strata, and the current hardened the charged sheet of rock more so than the surroundings.

Each dielectric layer spreads charge to the interface of its layer, driven by the electric field, to balance the voltage drop across the layer. So a charged sheet develops at the interface of each layer, and a step voltage to the next layer, which creates a surface tension at the interface, which makes the rock hard and dense. What is sandwiched between is often loosely consolidated.

DSCI0401Pinnacles in this region are of two types. Fulgarites, like the burnt shard of Agathla peak, are the direct result of lightning boiling up the crust of the earth in an electromagnetic blister. These types of pinnacles were discussed in Lightning Scarred Earth, Parts 1 and 2.

DSCI0096
Agathla Peak in Monument Valley is a lightning blister.

Sandstone pinnacles are where lightning struck and altered the charge in the rock beneath it, creating an electrical ‘shadow’ to sputtering discharge. They are literally, the shadow of lightning strikes.

The footprint of a ‘brief’ strike, comparatively speaking, produces a narrow cone of protection. How the cone slopes and steps depends on properties of the rock layers and the electric field potential.

DSCI0101More sustained, or potent striking begins to diffuse charge depletion outward, forming nodes, or star like breakouts.

DSCI0418Still larger accumulation of strikes, diffuses charge further, and nodules break out into ‘wings’, or dykes of charge depleted rock.

DSCI0343DSCI0344DSCI0345The shadow footprint grows as arcing continues, elongating charge depleted zones into wedges with dykes growing out the tips and edges. It’s actually the beginning of a fractal dendrite, as lightning bombardment soaks charge from the ground, diffusing outward in branches and creating a depleted zone protected from sputtering. If the process continued before the surroundings sputtered away, the dendrite nodules would grow and branch in ever smaller fractal repetitions, like branches of a tree.

Molly's Castle1Little flat topGilson Butte1Wild Horse Butte3Wild Horse ButteAs adjacent rock is struck, the depleted zones connect into networks of wedges, ridges and pinnacles.

DSCI0204DSCF2097DSCF2098DSCF2096Generally, the pinnacles and buttes left on a dome are layered flat, but in some areas buttes display a dip, indicating horizontal winds influenced the deposition. Sputtering follows the voltage gradient, and so carves away from the lightning depleted zone in alignment with the strata because the voltage gradient follows the dielectric layers, cutting at 90º to the dip angle, leaving a straight-edged non-vertical wall. If eroded by conventional notions of wind, rain and mass wasting, the rock would obey gravity and erode a vertical wall. It is in details like this that prove electrical formation.

DSCI0347What we see in the stepped pyramids and terraced canyons is the result of two types of charge transport in a solid state matter. One is drift ionization caused by the external electric field of the storm, and the other is diffusion current caused by differences in charge density within the material of the dome.

Drift current is the flow of charge created by the external electric field of the storm, which primarily drives the ionized region downward, vertically through the layers of sandstone. Drift currents obey Ohm’s Law.

Diffusion current obeys Fick’s Law, which is related to Ohm’s Law, but accounts for variations in charge density that causes ionization to migrate from a region of high charge concentration, to a region of low concentration. No external electric field is needed for diffusion current, because the difference in charge concentrations creates a gradient between regions that results in a local electric field. This is the primary process that migrates charge horizontally – spreading out through each layer of sandstone.

What is carved away by sputtering leaves distinct scalloped edges in very dry, low conductivity material. The scalloping is a fractal phenomena of electrical diffusion that repeats the scallop shape in ever larger scallops.

DSCI0161

DSCF2102
Canyon rims are dry, course, and broken, with scalloped walls.

DSCF2100

DSCF2101
There is very little fallen, broken rock surrounding buttes and pinnacles.

In wetter environments this isn’t as apparent, or it may be totally absent, because water diffuses charge more evenly, creating smoother surfaces.

Water4archesWater3archesCompelling evidence the scalloped and terraced walls are a result of charge diffusion is shown in this image, where the archetype of all fractal shapes emerges – the Mandlebrodt Set.

Although it’s not a computer perfect rendition of the Mandlebrodt Set, it is nearly so. It’s a naturally generated fractal based on the same mathematical relationships of iterating three dimensional motion that governs electrical charge diffusion in solid state electronics.

Mandyprime

Mandy1Mandy2

The implication is obvious.  The shape of the canyon walls, the terracing, the fractal repetition of form – everything known about applied physics dictates this is the result of electrical current diffusion on a continent-scale semiconductor under the influence of a gigantic electric field. The physics is not only laboratory proven, it’s been used to make every semiconductor device ever manufactured.

In fact, geophysicists and even Hollywood CGI artists, simulate geologic forms like watersheds and river systems, canyons and mountains, using the fractal geometry of electrical diffusion. So, what is being described here has been acknowledged by consensus science. The scientific conclusion that these land forms are the result of electrical diffusion caused by an intense electric field influencing Earth’s crust, in an event in the manner Electric Universe theorists have described since Immanuel Velikovsky, is scientifically unavoidable.

Yet avoid it they do – consensus science, that is. To quote from a Wikipedia article on diffusion:

“Analytical and numerical models that solve the diffusion equation for different initial and boundary conditions have been popular for studying a wide variety of changes to the Earth’s surface. Diffusion has been used extensively in erosion studies of hill slope retreat, bluff erosion, fault scarp degradation, wave-cut terrace/shoreline retreat, alluvial channel incision, coastal shelf retreat, and delta pro-gradation. Although the Earth’s surface is not literally diffusing in many of these cases, the process of diffusion effectively mimics the holistic changes that occur over decades to millennia.”

Do you see what is going on here? Geophysics uses diffusion models to recreate Nature’s landscapes – they use the mathematics and physics of charge diffusion to do it, but don’t understand why – they think it’s just a coincidence. Rather than conclude from empirical data they have in hand, in proper scientific fashion, that electric current diffusion has a role in shaping the landscape, they conclude it’s just coincidence.

One hates to be critical of hard working geophysicists, but to have an empirically proven answer staring you in the face – and even be using it, with great success, as your model – and still ignore it in favor of a preferred narrative, is what a politician does, not a scientist. The idea that diffusion “mimics the holistic changes that occur over decades to millennia” is nothing less than absurd.

Diffusion is caused by charge transport from higher to lower concentrations. It’s an inside-out physical phenomena. It occurs at the atomic level, where charge diffuses from atom-to-atom, and then works its way out with secondary effects to produce the macro-fractal patterns we can see. Conventional erosive forces of water, wind and ice act on the land from the outside in, not from the inside out. They can’t possibly produce the kind of landscapes we actually see, and that is why they cannot be modeled with hydrodynamics, or any of the unverifiable effects of slow random forces of wind, ice and water acting over millions of years.

Scientists are forced to use electrical diffusion to model the obviously fractal and non-random forms on the landscape because it’s the only model that works, yet are so invested in scientific dogma they can’t see the discovery they made. It verifies everything I’ve said, so I appreciate they’ve already proven my case. But their notions violate physics, which is something they obviously don’t understand, so they call it a coincidence instead.

Fortunately, in EU we like to deal in truths. In Part 3, we’ll examine a few more examples of Sputtering Canyon evidence.

Sputtering Canyons, Part 1

Also published at Thunderbolts.info

In summer of 2016, following the EU Conference in Phoenix, Arizona, EU Geology researchers visited Arches National Monument, and the deep reaches of Canyonlands, Utah, where the Green and Colorado Rivers channel through the Colorado Plateau.

Arches National Monument is an astonishing place for anyone interested in EU Geology. By conventional reckoning, the high desert plateau was carved into fantastical arches and hoodoos after millions of years of subtle water and wind erosion. To the EU researchers, however, it was evident the land was zapped, carved and seared by electrical storms that could have happened last year, so fresh looked the marks of evidence.

The Arches’ formation tells a story which explains one of the key phenomena that shaped the face of the planet. The phenomena is called sputtering discharge. So let’s take a look at what that is.

DSCI0213
Arches National Monument, Utah

Sputtering discharge, as used in manufacturing, is a dark, to glow-mode current in plasma used to deposit thin films of material onto a substrate surface. It’s analogous to electroplating, or galvanic reaction in a fluid.

An electric field accelerates positive ions in plasma to collide with a source material, which breaks molecular bonds, eroding the source material. This is what the term “sputter” refers to –  the breaking away of particles which then drift in an electric field to coat the substrate. The source material is the cathode, and the substrate is the anode in the circuit. The material exchange is performed by electricity. Manufacturers often use magnetrons to shape and control the current, and improve material transport efficiency with external magnetic fields.

The point to be made, however, is that high voltage, low current in a plasma will erode, or etch away a cathodic surface and plate itself in layers on the anode. This is the process that shaped Canyonlands.

To fully understand these canyons, however, we must first understand domes, because the canyons are carved from a dome. The entire Colorado Plateau is a dome – or rather, a series of domes overlaying each other. The domes are composed of sedimentary layers of limestone and sandstone. The layers are stacked for the most part evenly and flat, like a layer cake.

This basic layer cake structure is capped with the Rocky Mountains on the East and carved into canyons on the West, while shot through with the Lichtenberg patterned, vertically cut gorges of the Colorado and Green Rivers.

The dome structure of the plateau, and the canyons carved through it, is primarily the result of a natural sputtering discharge process created during intense electrical storms. Of course, in this case, we are speaking about storms created in a past environment, when Earth’s electric field was amplified to the point the atmosphere ionized.

Imagine the atmosphere stirred into a maelstrom lit with streamers of glowing plasma. Where lightning crackled, not only in the sky, but across the land, and mountain tops glowed with coronal fire under swirling clouds of dusty plasma.

It would have been surreal. A place where streams of wind became electric currents. Where high and low pressure zones acted like battery terminals, and mountain tops became electrodes drawing machine gun lightning from the sky. Anything standing in the wind would have hissed and snapped with coronal fire.

Dust in the air would have acted strange, too, as the energy of free electrons collided and overpowered weaker atomic bonds, ionizing matter, causing it to act like a ferro-fluid under the influence of a magnet. Ionic species segregated, forming unipolar winds that tore past each other in opposite directions, creating shear zones of intense electrical discharge, and vortex winds of supersonic speed.

The inside of Earth would have been in turmoil as well. Hot magmas spewing from volcanic vents. Aquifers boiling. Explosive eruptions of steam from deep underground, pocking the landscape with holes. Even arcs would erupt – lightning from the ground – caused by buried pockets of charge where minerals and water ionized.

The winds, dust laden and electric, deposited the Colorado Plateau, plating a cake across the western half of North America in the same way semiconductor manufacturers layer circuitry onto silica wafers. The stratified layers are interspersed with magma flows, petrified forests, inland seas and dinosaur bone-yards of different ages that indicate it formed in a series of events that likely recurred over millions of years.

To create the Canyondlands, the voltage potential had to reverse, and eat away at landscape newly laid down by the storm. Under the electric field of an electrical storm, the surface of the earth becomes positively charged. It becomes the anode in the circuit where lightning strikes from the negative cloud base, and where rain falls. In primordial ionic storms like those that formed the plateau, rain didn’t fall, but silica did, as dust in the air fell and adhered in layers to the dome.

Inland seas, or layers washed over by tsunami generated by the storm itself, became covered over with more layers of dry overburden as the storm progressed. This left a moist layer, like icing in the center of the layer cake. This icing layer then ionized under intense bombardment from sputtering discharge in the eye of the storm, and created what is known as a barrier discharge in the moist layer beneath the ground.

Which brings us to Arches National Monument, proof that the canyons were carved by sputtering discharge, aided by barrier discharge, in a moist layer of the big cake.

This image tells most of the story. A band of rock that looks tortured and fluid, as if it were boiled mud when it solidified, sandwiched between smooth, more-or-less even layers of stone. The canyon floor is flat, which is surprising, if one accepts the consensus view that the canyons were made by water erosion. Water erosion leaves deep channels and vee-cut valleys, not flat floors.

DSCI0212
‘Boiled Mud’ layer in Arches National Monument. The undulating bottom of the ‘boiled mud’, strata may be indication of tufting typical in plasma discharge.

This closer image (below) shows the fluidity of the layers. The overburden rock barely sinks into the sagging layer that turned plastic beneath it, because it was still solid. The plastic layer sagged, but didn’t compress, maintaining a consistent thickness. But on the bottom, the ‘boiled mud’ layer fluidized and squeezed like toothpaste.

What turned this layer fluid, and caused it to sag beneath a solid overburden, was electrical current. A barrier discharge current, where no gaseous atmosphere was present to ionize into plasma, but instead, the moisture and mineral in the layer ionized, generating a subsurface current.

DSCI0209
Fluidity in the ‘boiled mud’ layer.

The moist layer ionized and charged species pooled into a plasma-like mud the electric field wanted to lift away. The electric currents boiled the moist layer and it began to foam and arc into the drier and electrically resistant overburden. When sputtering removed the surrounding overburden, pressure released and vapors expanded, making gas bubbles that raised the arches. Hardened pinnacles formed where mud boiled up in convective blossoms of hot ionization.

DSCI0214
The arches rise from the ‘boiled mud’ layer.

DSCI0217
Bulbous nodules rise from the ‘boiled mud’ layer like bubbles of foam.

DSCI0218
Beneath the ‘boiled mud’ layer, strata returns to evenly structured layers.

DSCI0216
A yawning arch rising from ‘boiled mud’ due to gas bubbles. The small hole to left is flattened against the hard overburden, as a bubble would, pressing up against a barrier.

One can see how the moist layer boiled and heaved, while currents arched and thrust upward, trying to break through the overburden rock. But in this area, it was unsuccessful. The traces of barrier discharge remain in the rock.  The empty, flat canyon floor, where the overburden and moist layer were carried away is where the discharge broke through to complete the circuit.

Arches is a display of etching, or Electric Discharge Machining (EDM) stopped in process. The wet layer was boiling off due to the current in it, and lifting away with the overburden when the process stopped, leaving these arches and hoodoos. It likely stopped when the sputtering glow current suddenly jumped to arc mode, and lightning struck, dissipating the charge built-up in the wet, ‘boiled mud’ layer.

Sputtering discharge is typically used in manufacturing to remove only micro-meters of material. The ion bombardment on the surface of cathode material only shallowly penetrates to break atomic, or molecular bonds and release particles. So how could such a process remove hundreds of feet of solid sandstone?

One reason is the strength of the electric field at work on the charged species. In the primordial storm we are discussing, the electric field would have been many billions, perhaps trillions of volts. The electromotive force of such a field applied to any large pool of charged species could lift a mountain.

The other reason is diffusion of charge through a thousand feet of dry, sandstone overburden, to ionize the wet layer. The section of the dome overlaying the wet layer acted as a solid state semiconductor, coherent with the intense electric field. Charge diffused through the silica layers in a manner to be discussed in more detail in Part Two of this article.

The wet, ionized layer then underwent a process called heat spike sputtering. Heat spike sputtering occurs when diffusing ionization causes secondary reactions. The secondary reactions occur in the wet layer, which is highly conductive and volatile. Currents heated the material and caused thermal liquifaction, melting and steam micro-explosions.

In Canyonlands, the wet layer ionized, inducing currents which heat spiked, discharging from the wet layer to the layer above. The arches and bubble-like pinnacles in Arches N.M. were created by heat spike sputtering and bubbles from micro-explosions as the ‘boiled mud’ layer ionized, vaporized, and discharged into the overburden.

This short film produced by diveflyfish on YouTube helps visualize the process of diffusion through rock and barrier discharge that caused the ‘boiled mud’ layer to boil. In it, Jim Hamman, the creator of diveflyfish, and an EU contributor, employs a high voltage Tesla circuit to generate current through a granite block. There are two things to note as you watch the film.

First, note how the flow of electricity diffuses through the entire granite block. Instead of channeling directly below the electrode in a narrow stream, it flows out the full footprint of the crystalline granite block. The external electric field of the circuit is diffusing charge through the granite as in a solid-state body.

In the tense electric field surrounding the eye of the hyper-storm that etched the canyons, currents also diffused through the dome matrix in this way, ultimately ripping out mountains of earth in the blink of an eye as currents boiled and liquified the wet matrix below, similar to the plasma tornadoes swirling in the gaps between the electrodes and the granite.

Second, note the plasma tornadoes that bridge the gap between the block and electrode. They are not in bright arc mode, but are filaments in glow mode. The plasma tornado currents are in the air gap, where the air has ionized to plasma. In the Arches, there was no air gap between the ionizing wet layer and the overburden, so the discharge was a barrier discharge coming from the ‘boiled mud’ layer. The currents flowed around the boiling, bubbling, foaming heat spikes to fuse and harden the less conductive overburden in it’s pattern of arches and pinnacles.

Jim’s experiment was intended to look for piezoelectric amplification of the current, but isn’t instrumented to acquire a measurement in this video. It does however demonstrate diffusion of current through granite, which demonstrates how ground currents can diffuse in natural rock. Towards the end of the clip, arcing begins where hot spots begin to eat through the granite, collecting the current into a single path, and starving the diffusion currents.

There are many other evidences of sputtering discharge in the Utah Canyonlands. In part 2 of Sputtering Canyons, we’ll examine some more.

Thank you.

Lightning Scarred Earth, Part 2

Originally published by Thunderbolts.info

In Part 1 of Lightning Scarred Earth, Shiprock was presented as an example of a pinnacle created by lightning. Fulgarites are created when lightning strikes, and current penetrates the ground, leaving a hollow tube of glassy, fused material behind. Current from the lightning vaporizes and extracts material in it’s path, while it’s heat vitrifies the surrounding soil, leaving behind glassy tubes.

Based on it’s features, it’s proposed that Shiprock is a standing fulgarite, created by lightning so powerful and sustained that the material began to recombine in the current as it was pulled from the ground, leaving behind a pinnacle of fused material instead of a hollow tube. Once material recombines, it’s no longer charged and attracted to the lightning channel, so is left behind, it’s ionic makeup altered by the current and heat.

SR431
Dark minette spills from the center of Shiprock, surrounded by a broken sheath of lighter, distinctly different rock.

The morphology of Shiprock displays this very well, with columns of fused rock, surrounding an inner core of minette – ionically altered material pulled from the ground by the flow of current. Surrounding the pinnacle are minette dykes radiating away in a star pattern.

Kayenta Lightning13
Dykes radiate from Shiprock in a star pattern

Minette is high in potassium and low in silica content. It contains high volumes of orthoclase and biotite. Both are minerals with high metal content, such as potassium, iron and sodium.

Silica dioxide will readily exchange oxygen with metals, such as those found in the orthoclase and biotite, when sufficient heat is applied. The prevalence of potassium and other metals crystallized in minette, and its under-saturation of silica, is evidence of the reduction taking place as it was formed.

This suggests that the lightning forming it was positive lightning, which is the type of powerful lightning seen striking from the stratospheric anvil clouds in thunderstorms. Electrons and negative ions in the ground, pulled out by the positively charged lightning, left behind a concentration of positively charged material which was not attracted and drawn away. The dykes and inner core of the pinnacle show the path of the current being drawn to the lightning discharge.

shiprock7
Delicate lichtenberg discharge surrounds Shiprock

Following the lightning strike that formed the pinnacle, the area was left with a net positive charge, which attracted a secondary ground discharge, or arc blast that emanated from a different discharge process. This secondary discharge will be explored more in the future, but it’s worth mentioning now because it left a magnificent Lichtenberg pattern across the ground, unique to the area immediately surrounding Shiprock.

The next series of images shows the evolution in magnitude of this type of formation. These are all examples from the four corners region in Northern Arizona.

First, when lightning similar in magnitude to what we see today strikes the ground, it sweeps surrounding surface sand to it, drawing it to the lightning channel and creating a shallow crater. Examples of this were shown in Part 1. where lightning created small craters with a pile of sand left behind in a small cone.

SAM_0402SAM_0408

Again, these are not anthills, although they could easily be mistaken for them on cursory examination. There are no ants, no opening in the mound, and it’s dusted over the top with sand fused into pebbles. The pebbles rest in a thin layer over the top, like sprinkles on an ice cream cone. Beneath is powder fine sand.

The top layer was formed from sand pulled into the lightning channel and fused into pebbles by heat, then dropped back on top of the mound when the flame extinguished. They bear the same character as the minette material in Shiprock’s center and dyke formations. All of the mound material and surrounding sand measures high in pH.

The following images show buttes at various stages of growth. The first exhibits an up-welling of minette. The second and third images show the broken remains of the sheath, and the last image shows the dark minette partially surrounded by the lighter rock sheath.

SAM_0458dsci0130dsci0135SAM_0451

Another type of lightning formed butte has a different morphology that appears to be created by negative cloud to ground lightning – the type of lightning that emanates from the belly of thunderstorms.

Because the Earth is generally a negatively charged body, at least in terms of ground charge, it forms a double layer at the interface with the atmosphere. When a thunderstorm forms, and the electric field strengthens, positively charged ions in the atmospheric zone of the double layer collect above the ground beneath the storm.

Before negative cloud-to-ground lightning strikes, it pulls this material into positive ionic streamers that reach up to connect with the electron avalanche produced by the cloud. When the streamer and avalanche leader connect, a circuit is completed and current discharges through the channel, electrons flowing to ground and positive ions flowing up to the clouds.

The magnetic field created by the current wraps tightly around the channel, compressing it to a narrow path in what is known as a ‘Z pinch’. ‘Z pinch’ has been demonstrated in the lab by simply passing current through an aluminum can, with the electrodes connected at the top and bottom. The resulting pinch crushes the can into an hourglass shape.

In the huge primordial storms that we theorize occurred in Earth’s past, such lightning and pinch effects resulted in huge amounts of positive ionic material being swept to the lightning channel with such extreme force it sometimes created supersonic winds.

Fulgamites formed by sustained, giant cloud-to-ground arcs display the effects of discharging current, accumulation of ionic dust, z-pinch and the supersonic winds and shock waves they produced. The images presented show the progression of such an event.

First, the strike forms a raised platform, with a shallow crater in the center where the lightning created an electrode spot. The rim of the crater is material swept inward by ionic winds and fused. There is a road cutting through the crater in the first image to give some perspective how large the feature is. These images are from Arizona, near Pastora Mountain.

Pastora5Pastora7

A more sustained strike begins to accumulate neutralizing material on the spot, forming a flat-topped dome, like a pancake. As the material accumulates, the pancake grows to a mesa type structure, held together in a round form by the magnetic pinch.

Utah7Pastora10

In the next phase of growth, the mesa grows taller and the inflow winds begin to reach mach speeds, creating shock waves that mold the rim material into triangular standing wave forms. A detailed discussion of this shock wave and the triangular buttress formations they create is presented more fully in previous articles on Arc Blast.

Utah9
Mt Hillers, Utah – Hard rock buttresses form a nearly perfect circle around the base from in-flowing supersonic winds.

Utah19
Mt. Hillers, ringed by shock-formed buttresses, lies in a complex of lightning formed mountains. Less developed craters and domes can be seen behind it.

As neutralized material builds, the anode spot the lightning connects with is at the top of the mesa, and rises with it. The strength of the pinch narrows the top forming a cone, and new regions of windblown, fused and shock-shaped buttresses form rims outside the older rim.

SAM_0116
Left to right, the conical head of a fulgamite and concentric rows of granite buttresses. The dark vegetation band below rocky buttresses shows consistent angle of dip created by wind blown deposition – Buster Mountain, southern Arizona

The difference between lightning formed pinnacles like Shiprock, and the broad mountain forms shown in these images, seems to be polarity in the lightning. This interpretation is preliminary, but it appears that positive lightning burrows into the ground to connect with negative ionic matter beneath the surface, whereas negative lightning attracts surface winds and dust to it.

Positive lightning raises a narrow pinnacle of negatively charged material that boils up from the ground, with dykes which display the current path through the subsurface. Not much material is drawn to it from the surroundings, except for the sheath of rock it forms around it.

Negative lightning connects with pools and streamers of positively charged matter at the surface, and pulls huge amounts of airborne dust to create a dome with hardened, buttressed rims.

Slide1

In both cases, mountains can form around them due to ambient winds and blowing dust. Positive arc fulgamites can form monoclines along the dykes, if ambient, supersonic winds strike them to create a standing wave, where dust piles into long, linear ranges of triangular wave forms.

11111
Monoclines form against fulgarite dykes – San Rafael Reef, Utah

kayenta-dikes-1
Blue dots and lines denote fulgurites and dykes in Comb Ridge monocline, Arizona

SAM_0446
Fulgurite (right pinnacle) and dykes walls behind Comb Ridge monocline.

The last images above, taken at Comb Ridge monocline in northern Arizona, shows where fulgamites and dykes are exposed in the monocline. These protrusions created a shock wave in mach speed ambient winds that formed a linear standing wave, against which the monocline was formed like a dune, as blowing dust accumulated. There are several monoclines on the Colorado Plateau that exhibit the same, or similar features.

Negative arc fulgamites create their own winds, bringing dust to pile against them from all directions, and if powerful enough, form standing shock waves that generate buttresses in a ring around the base.

SAM_0482
Fulgamite peak in Utah, near Capitol Reef.

DSC00494
Fulgamite forms central peak in Utah Mountains, near Capitol Reef.

clean39
Circular fulgamite features in Utah mountain range. Note the raised rims around the features built by inward flowing winds.

Pastora13
Circular fulgamite features in and around Pastora Mt., Arizona.

The circular craters and mesas in the images were formed by lightning, while the mountain was expanded by wind borne dust accumulating around them. There are several examples of mountains with these features in the Four Corners region.

Mountains are a misunderstood feature of the planet. Geological concepts are based on rocks forming deep in Earth’s crust and being exposed by erosion and tectonic motions, entailing, of course, hundreds of millions of years. It’s a very complex process that has not, and cannot be witnessed, or confirmed by experiment.

Mountain formation by wind and electric discharge, however, can be witnessed in nature. Sand dunes are a prime example. Mountains can also be produced in laboratories. So can rock. It happens when slag is produced from welding, ore and metal processing, or from chemical reactions like cement. Atomic and molecular bonding is an electrical process – the exchange and sharing of electrons.

Electricity and wind is a far more plausible mechanism for mountain building than what is proposed by the consensus theories. Especially since the actions of wind and lightning that formed mountains on Earth can be seen in any thunderstorm. One only needs to extrapolate the forces and energies involved to what they would have been when Earth was in a much stronger electrical environment.

Amplify the electric field of a thunderstorm by orders of magnitude, and it will produce an ionized atmosphere, screaming with supersonic winds, ionized dust, and incredible discharges of lightning that dwarf what we experience today. For examples, we need only to look at our neighboring planets. These conditions exist on Jupiter, Saturn and Venus. Why would Earth be any different.

Thank you.

Quick Tip

Please help support The Daily Plasma.

$2.00

Tornado – The Electric Model

Re-posted courtesy of Thunderbolts.info

Previously, in Nature’s Electrode, we looked at an Electric Earth model for lightning genesis driven by a plasma corona formed from condensing and freezing water vapor in the central updraft of the thunderhead. We also looked at the thunderstorm itself, and an electrical model for the circuit that drives it, in The Summer Thermopile. Now let’s consider the most dramatic weather event of all, the tornado, and how these massively destructive whirlwinds are also formed by a plasma corona in a thunderstorm.

For air to become plasma and carry current, the air has to be partially ionized. A plasma state can be defined by “plasma density” – the number of free electrons per unit volume, and the “degree of ionization” – the proportion of atoms ionized by loss, or gain of an electron.

A gas with as little as 1% of the particles ionized is a plasma, responding to magnetic fields and displaying high electrical conductivity. A partially ionized plasma is often referred to as a “cold plasma”, and highly ionized plasma is referred to as “hot”. Discharge from a corona is predominately a cold, dark current, invisible to the eye.

Cloud-to-ground arcs come from high charge density regions of the corona, surrounding the central updraft where current from the updraft generates ions. Ground charge builds below this region in response, and the electric field strengthens, magnifying and focusing electron avalanche the way a lens focuses light, into a continuous plasma channel. When the channel connects with ground and discharges a hot current, it wraps tightly in it’s own magnetic field, in what is called a ‘”Z” pinch’.

Moving away from this self ionizing/high electromagnetic field region of the corona, free electrons spit at the ground, but lack the energy and focus to avalanche all the way, creating instead a mobile cloud of ionized gas that follows the field gradient to ground, generating a dark current. The current is said to “drift” in this region, yet the electric field still organizes the drifting ions into a columnar channel.

slide2

In the image, the center of the coronal discharge is focused and imparts more energy to cascading electrons, creating the potential for arcs (see the current density distribution at the bottom of the diagram). Closer to the outer edge of the corona, weaker reactions manifest in transfer of momentum and heat with ions and neutrals. Downdraft and down-burst winds are the common result.

slide2

Momentum transfer manifests as downdraft winds by the process of electrokinesis, which is neutral species attracted to, and mobilized by, the charged particles zooming down the electric field gradient towards ground, creating an ‘electric wind’ that moves the bulk fluid along the electric field gradient.

If the ionization rate exceeds the rate of recombination, the plasma will build a streamer, a tendril of plasma from cloud to earth, pushing a plasma generating ionization region ahead of it, and drawing behind it a cloud of cold plasma. When this plasma hits ground, a cathode spot is produced, and the electromagnetic field redistributes along the plasma channel, focusing it.

The cathode spot on the ground  draws positive charge to it, dragging neutrals, again by electrokinesis, and creating the in-flowing winds that generate a ground vortex. This is the moment of tornado touchdown, as charged air and dust flow in and spiral upwards around the invisible plasma tendril.

The action is analogous to the lightning bolt leader and positive ground streamer that meet to create a channel for lightning discharge – two seemingly separate events, organized into one coherent structure by the electric field.

The plasma current thus created is a complete circuit to ground, only it’s partially ionized, diffused with predominately neutral species. Its energy and charge densities are too low to make an arc, so it forms a complex plasma channel called a Marklund Convection.

400px-marklund-convection
Marklund convection, showing diffusion of neutral air away from current tendril (blue arrows) creating low pressure. Plasma drift (green arrows) draw positive ions at ground level, creating inflowing winds to the point of contact with the plate electrode.

Rotation is a natural consequence of the circuit. Neutral air is diffused away from the Marklund current creating low pressure. But positive ions near the ground drag air, dust and debris to the ground contact and create in-flowing winds and a sudden change in direction up, and around the tendril. The meeting of these opposing winds is the ground vortex.

The current flow in the plasma will itself rotate, taking a helical path as it interacts with the magnetic field around it. The appearance of a tornado is precisely the expected morphology of a Marklund current. Increasing current flow “spins up” the tornado.

It forms an inner, spiraling, negative current to ground and an outer spiral of positive ionic wind flowing up to the source of coronal discharge in the cloud.

slide1

Because the tornado is a cold, partial plasma current exchanging charge between ground and atmosphere, it can be pushed by winds to create a slanted, or kinked path, and travel away from it’s point of origin.

classicsupercell

slide4

Evidence…

There are several tell-tale signs the electric model of tornado genesis is correct.

Wall clouds…

One evidence is the wall cloud. Wall clouds form before a tornado in a typical storm evolution. It develops rotation and sometimes its clouds can be seen to rise and fall in an agitated manner. Puffs of low level clouds are drawn to it below the main cloud base.

The wall cloud is a physical expression of the corona. As the corona gathers charge, it creates a lowering, vertical wall of cloud as ionization condenses moisture in the column of air below that is incongruous to the general slant and motion of the storm clouds and in-flowing winds. It’s visual evidence of a region where the electric field is strengthening and the corona is increasing charge density prior to establishing a current to ground with a tornado.

lakeviewThe funnel cloud doesn’t always emerge from the center of the wall cloud. The funnel often appears along the edges of the wall cloud, or from the surrounding clouds.

This is because the region of charge density is mobile and can wander. They can also multiply, creating several tornadoes.

Characteristic of parallel currents, multiple tornadoes stand off from each other as if repulsed like two parallel wires flowing current in the same direction. Rare occasions when tornadoes seem to merge, it may be that one simply dies as the other steals it’s current.

The sudden disappearance and reappearance of tornadoes, and the reported skipping, or lifting they seem to portray, are likely caused by pulsating current from an unstable coronal discharge that weakens until recombination steals the current, and then revives when the rate of ionization again overcomes the rate of recombination and a complete circuit to ground is reestablished.

Tornadoes and lightning…

As discussed in Nature’s Electrode and The Summer Thermopile, lightning frequency is highest around the central updraft and increases in frequency with the strength of the updraft wind. When a tornado forms, cloud-to-ground lightning frequency diminishes until the tornado dies, and then picks-up again to the previous baseline. It’s also found that positive lightning is more common in tornadic storms.

The latter is evidence the corona in the storm’s anvil, that spits positive lightning, is instrumental in creating the electric field strength necessary for a tornado. It amplifies the field strength affecting the negative corona in the cloud base, below, creating conditions necessary for tornadoes.

The fact that cloud-to-ground lightning dissipates as a tornado spins-up is evidence the corona is part of a coherent electric circuit, where current in one region robs current from another.

tornado_pic_1

Sights, smells and sounds…

Storms that produce tornadoes are often characterized by a greenish tint in the clouds. The green tint is excused by many scientists as a reflection of city lights. While their search for green-tinted city lights continues, the dim glow of a coronal discharge internal to the cloud formation explains the green tint.

Luminosity in the clouds and the funnel are also reported. Consensus science blames this on misidentified sources of light from lightning, city lights, or flashes from downed power lines. Some of it no doubt is, but some of it is likely the effect of coronal discharge. Lightning flashes don’t make a continuous glow.

Ionized oxygen  can recombine to produce ozone, which has a distinctive chlorine-like “gassy smell”. This smell is often reported by witnesses.

220px-tornado_infrasound_sourcesSo are hissing sounds from the base of the funnel. Funnel clouds and small tornadoes are known to produce harmonic sounds of whistling, whining, humming, or buzzing bees. As ozone is liberated it produces such a hissing sound.

Energized transmission lines subject to over-voltage conditions produce all of these same effects: faint luminescent glow, ozone production and it’s accompanying hiss and smell. It’s cause is coronal discharge.

Tornadoes also produce identifiable infra-sound. It’s inaudible to the human ear, but it can be felt. It will produce nausea, agitation and body heat, effects often felt in the presence of tornadoes – although fear might do that, too.

Lightning has been reported internal to the funnel. These may be a form of cloud-to-cloud discharge, between the counter-flowing positive and negative currents in the Marklund convection.

Tornadoes are seen to have an inner and outer column, although this is disputed by consensus scientists as an illusion. The inner column, however, is seen if the outer dusty sheath dissipates, or is blown away. This is consistent with the double wall formed in a Marklund convection.

cordell
Double wall – an inner tube with an outer sheath of dust can be seen.

Tornadoes emit on the electromagnetic spectrum as measured by researchers. Tornadoes emit sferics, the same type of broadband radio noise lightning discharges produce.

Non-super-cell tornadoes…

220px-great_lakes_waterspoutsSo what if there is no super-cell? How do all the other vortex phenomena form – landspouts, waterspouts, gustnadoes and dust devils, and how are they related.

By the same mechanism proposed here for the super-cell tornado, only in lower energy form.

Funnel clouds, which never result in a touchdown are a tendril of Marklund convection current that begins to recombine faster than it generates ions, and it dies.

Landspouts, gustnadoes and waterspouts all begin with a surface disturbance – a vortex without a cloud, or at least not one showing a wall cloud, or rotation. These are instances of stronger ionic accumulation at ground level, creating a strong ground vortex first in easily ionized sand, or water, whereas the corona above is weak and diffuse.

funnel-800

This comports with observations of twisters of all kinds, including dust devils and spouts which are seen to begin on the ground. Or water – in the case of a waterspout – where documented evolution begins with a mysterious “dark spot” on the water.

290px-chaparral_supercell_2

Thunderstorms, lightning and tornadoes – all products of the same weather event – can be perfectly modeled electrically. Electromagnetic fields, ionization, current, capacitance and induction rule nature. It is evident in Nature’s every aspect, because the fractal, self-same patterns always appear.

Consensus science adheres to a gravity model that ignores this fundamental causation and instead feverishly dissects the emergent thermodynamic and fluid dynamic interactions looking for answers, like trying to tell time by taking apart the clock. They continually come up short, as a result.

The Summer Thermopile

Re-posted courtesy of Thunderbolts.info

In a previous Thunderblog, we talked about Nature’s Electrode… how a cold plasma corona is the proper electronic model for lightning genesis, and how mechanisms for ionization in a thunderstorm work.

Now let’s take in the bigger picture to get a more coherent look at a thunderstorm.

classicsupercell

The proper electrical analogy for a super-cell storm is a thermopile.

A thermopile is an electrical circuit that you’ve probably seen in use. Ice coolers made for cars that plug into the cigarette lighter are one example.

Thermocouple_circuit_Ktype_including_voltmeter_temperature.svgThermo-couples are an instrument to measure temperature used in your car and home air conditioning and heating units.

The thermo-couple is a circuit that couldn’t be simpler. All it takes is two, or more wires of different conductivity connected in series. The effect can also be made with solid state materials similar to solar cells.

220px-Thermoelectric_Generator_Diagram.svg
Current generation from thermo-electric effect.

The different electrical properties of the dissimilar wires create a temperature difference – one conductor chills and the other heats up  in the presence of current; or vice versa, current is produced by a temperature difference.

Now, hold that thought for a moment – current is produced by a temperature difference. Temperature is wholly a consequence of electrodynamics. There are all kinds of complexities about temperature and radiation and how it’s transported by conduction and convection, but the bottom line is electricity.

There are three mathematical relationships that describe the conversion of current to heat and heat to current in terms of a circuit, called the Seebeck, Peltier and Thomson effects. The details aren’t needed for this discussion because they describe different conditions and aspects of the same thing. Current produces heat, and heat produces current, provided the right dissimilar materials are properly arranged in the circuit.

The relevance to a thunderhead is in the central updraft core of the storm, which becomes a thermo-couple circuit. It’s a flow of wind bearing ionic matter which produces a current.

In Nature’s  Electrode, we discussed several mechanisms for how ions form a cold plasma corona by virtue of field emissions in a strong electric field. The updraft rapidly chills as it rises, becoming more saturated with condensate and ionization. It also shrinks. The central updraft column gets denser as it rises, so the column has to shrink in volume, and this causes it to speed-up.

250px-ShelfcloudThe many changes to the state of the air in the updraft changes the conductivity of the air in the column. The updraft column is electrically no different than a wire of changing conductivity, which in the presence of current, will exhibit a thermo-electric effect.

It won’t maybe do it, it’s gonna do it. It has to do it. In the presence of a huge electric field, a wet, surface-wind rising into the cold dry stratosphere is going to cause a whopper electric current. If anyone doubts this, go look at a thunderstorm.

When there is a sequence of several conductors of different conductivity in series, the thermo-electric effect can be amplified by adding more junctions. This is called a thermopile. It’s several thermo-couples connected together.

Thermopile2
Thermopile Circuit

A super-cell thunderstorm is a thermopile. It has more than one ionization event and each one changes the column’s conductivity in a feedback that increases current and amplifies ionization.

The rising central updraft ionizes where the moisture is saturating and condensing, or freezing, at specific temperature layers. All around the column is a shear zone between it and the surrounding air, and this is where the ions go to collect. The shear zone is an interface – a dielectric barrier that attracts charged species to it.

Again, let’s refer back to our previous discussion of Nature’s Electrode: we discussed how ionization occurs at different altitudes as the moisture in the air condenses, supersaturates and freezes.

It’s been known since the beginning of the twentieth century, that a fast-moving charged particle will cause sudden condensation of water along its path. In 1911, Charles Wilson used this principle to devise the cloud chamber so he could photograph the tracks of  fast-moving electrons.

In 2007, Henrik Svensmark published a theory on galactic cosmic ray influence on cloud formation, and later demonstrated his theory in a cloud chamber at Cern, demonstrating certain cloud formations are catalyzed by cosmic rays ionizing the atmosphere.

These are examples of ionization causing condensation. Now let’s consider condensation causing ionization.

Water vapor condensing into droplets self-ionize into cations and anions. In the huge electric field of a thunderstorm, the ions are torn apart as they form, filling the rising air with charged species. This condensation event forms the first corona, a negative corona around the central updraft with charge density concentrated in the lower clouds where condensation first occurs.

Above 1% volume of charged species, the air will exhibit the dynamics of a plasma. Plasma acts as a coherent fluid organized by the electromagnetic field. It seeks balance in an equi-potential layer transverse to the electric field, so it spills out from the walls of the column and forms ‘sheets’, which is what is detected in thunderstorms: ‘sheets’ of charged species.

noaaelectrical-charge-in-storm-cloudsThey actually have more complex geometry than a ‘sheet’. They organize into plasma coronas that actively spit out electrons and ions in channeled currents. Coronas have a geometry and produce effects that depend on the polarity of the charged species mix.

The channels of discharge they create explain every aspect of  a super-cell thunderstorms. Coronas explain rain, downdrafts, tornadoes and lightning.  They explain cloud-to-ground lightning and positive lightning; intra-cloud lightning and inter-cloud lightning. They explain sprites, elves and gnomes – electrical discharges to space that are the Earth’s equivalent to a solar flare, caused by the same thing – corona. They explain the shape of wall clouds, beaver-tails, the meso-cyclone and anvil.

Slide4

Because this is the electric model of a thunderstorm it’s closer to the truth. It’s not that convection doesn’t occur, it does. But convection is heat transfer and that is fundamentally electric, like everything else. Pressure and temperature are intimately related as physical expressions of electrodynamics.

290px-Chaparral_Supercell_2The anvil top is another coronal expression where the water freezes to ice. The ionic mix here is different and a positive corona is the result. It has a different shape, being a broad diameter and less dense in terms of charge density.

The coronas are the thermopile’s different current junctions, where charge bleeds out of the central updraft column, just as it will from a power line if the insulation is damaged. Atmosphere is a leaky insulator. It’s the strength of the electromagnetic field that gives the storm it’s shape.

And once the motor gets started – the conveyor belt of wet wind in the updraft keeps rev’ing as charge density builds. The rain curtain and downdraft are the same current looping and dumping hydrolyzed charge in the form of rain at the exhaust of the updraft.

It’s a looping current from ground to atmosphere, and back to ground, in a continuously changing conductive path through several temperature regimes – in other words, it’s a thermopile circuit.

And so builds the strength of the corona, until it spits electrons that avalanche into lightning bolts. If conditions are right, a charged corona will lower towards the ground, abating it’s lightning to send downwards a twisting tendril of plasma, while stirring ground winds below into a vortex. A tornado is born of a corona.

Slide2In the diagram, a point electrode generates a corona opposed to a plate electrode connected to ground, with a gap in between. This is a similar circuit to a storm except the corona in the clouds would not have the geometry of a point electrode, but likely a flattened toroidal shape.

In the region in the gap labelled drift region, channels of current are created based on the charge density of the region of corona from which it radiates. The outer edges where charge density and electric field tension is lowest, the corona can’t make lightning, but it still spits electrons that drift towards ground. The drift region of a corona creates unipolar winds as drifting electrons drag ions and neutral matter along by electrokinesis.

Slide3Sudden and intense down-bursts and mammatus clouds are highly mysterious to atmospheric scientists and they attribute them to density bombs – pockets of dense heavy air that rapidly sink from the clouds. These violent downdrafts will slap airliners from the sky. They aren’t density bombs – they are unipolar winds and ionizing tufts from the anvil corona.

slide2

The entire morphology of a thunderstorm is explained by a thermopile circuit with leaky insulation. But that isn’t all it is. In Electric Earth Theory, there is a more significant meaning.

The looping circuit of a super-cell is a weak form of electrical expression known as a coronal loop. Coronal loops are the result of the corona’s themselves moving relative to the plate electrode. The differential movement creates an offset between the center of charge density in the sky versus the center of charge density on the ground, distorting the electric field. It’s a dog chasing a cat that can never catch-up – negative chasing positive polarity in a wave.

Slide7

The result is it bends the current into a loop. It goes up in a wind born discharge of current and comes down, energy expended and recombined into rain. If charge builds enough, though, the loop breaks out into a fully realized discharge. The current breaks through the dielectric barrier of the atmosphere to splash charge into space. On the Sun we call them Solar Flares, and Coronal Mass Ejections. On Earth we call them Sprites, Elves and Gnomes.

So, here we are in the world of plasma. Double layers, Alfven waves, z-pinches and corona – it happens in our everyday lives as much as it does on the surface of the Sun – because it’s all the same thing.

Prominence_(PSF)So too, we have symmetry. Not the artificial symmetry of mathematical equations and categories consensus science keeps force fitting to Nature, but Nature’s true symmetry of nested harmonic repetition.

Traceimage
Solar Coronal Loop

Such organization and harmonic resonance between phenomena across all orders of scale is not the result of random anything. It’s the result of electricity.

The same phenomena is found on any planetary body that carries an internal current that forms an electromagnetic field. The coronal loops are ultimately caused by the voltage between the magnetosphere and Telluric currents below Earth’s crust, just as they occur above and below the photosphere of the Sun and in the atmospheres of Jupiter, Saturn and Venus.

The electrical stress across the layers of atmosphere and crust is charge building on layers of dielectric, which is what a capacitor is. A storm is an expression of capacitor discharge.

Tornadoes are a harmonic fractal repetition of the super-cell storm as a whole. They are nested coronal loops inside the bigger loop of the storm. Because they are smaller and generate from an intense charge density region of the corona, the energy is more concentrated.

Look again at the image of a solar coronal loop and see there is a smaller loop of higher intensity. This is the effect of an embedded harmonic repetition; and that is what a tornado is to the storm it’s born from. But, as always, it’s more complicated than that. We’ll delve deeper into tornadoes next time to complete the picture of a thunderstorm.