Month: October 2017

Lightning and Megaliths – The Connection


The blue-white arc of a lightning bolt stuns the senses. Blinding radiance, elemental beauty, awesome power and primordial danger flash into existence from thin air, and vanish before the mind catches-up. We stare, immobile, unthinking and awestruck.

In that moment, a channel of air the diameter of a quarter heats fifty thousand degrees, as trillions of electrons cascade to Earth. The volume of air blows-up, radiating shock-waves to peel and boom across the sky.

Lightning also pummels the land, creating pressure waves exceeding seventy-thousand atmospheres  – that’s one-million psi. It can create a layer of shocked quartz and vitrify surrounding rock into glass.

Lightning is an interaction between Earth and sky. It’s cause is an electric field between the electric storm above and the ground beneath our feet. ‘Ground’ is also a technical term, meaning the ambient voltage potential of the soil.

Earth is a negatively charged body in space, and current flows up from ground to atmosphere, normally in a drift of ions and electrons that is invisible. Storms reverse the current flow, causing electrons to avalanche back to Earth.

The Earth and sky are part of a circuit. Storms are capacitors in the circuit. They store energy in the form of ionic charge, and release it through dielectric breakdown of the atmosphere, causing lightning, among other effects.

animation_16a The ground is one plate of the capacitor where positive charge collects. As negative charge builds in the cloud, it is repulsed from the ground below, and positive ions are drawn in.

The ground reaches up with plasma tendrils. They collect especially around tall structures, pooling densely at sharp projections, surrounding them with a halo of charge the cascading electrons target for connection.

When connection is made, the arc touches Earth, spreading current in horizontal arcs across the surface as much as twenty meters away. This is a death zone. If you are in it, you are part of a 200,000 amp circuit.

The horizontal arcing is a side flash – a scatter of arc tendrils that follow surface conduction across the ground, radially away from the point of impact. The ground potential, type and shape of surface influences the character of the side flash.

Dry sand acquires charge very easily. Lightning attracts charged particles, and will sweep sand to it leaving a display of the entire strike zone. Sand in the strike zone, where current surges across the surface, pulls inward leaving a shallow crater with a cone of sand in the center. It’s like grabbing a bedspread in the center, pulling it up and dropping it in a pile.

The following photos were taken near Kayenta, Arizona on desert plains to the south of Comb Ridge.

The form is like an anthill, but these are not anthills. Ants dig rock from below ground and pile it outside the hole. These are built the opposite. The sand is swept-up from the surroundings, leaving a pile at the center of a crater. Besides, these don’t have ants, or ant-holes.

Darkened, fused sand pebbles dust the surface of the mound of powder. No ants, no hole.

The mounds of sand are composed of fine, almost powder sand. But the tops of the mounds are dusted with pebbles. The pebbles are sand drawn into the lightning channel that fused and fell back to Earth when the flame extinguished, falling to cover the mound, like candy sprinkles on an ice cream cone.

This is an anthill

Nothing grows inside the craters, or on the mounds. It’s as if the soil is sterilized. PH tests show the soil to be highly alkaline.

What meager growth there is are low, ground covering grasses and weeds around the perimeter of the craters.

arizonaThe desert in this region of Northern Arizona is carpeted with lightning strikes that left crater and mound features like these. The land is on the Colorado Plateau, just south of Monument Valley. They form what some call fairy rings when seen from the air.

The next images show clusters of them. The craters vary in size from fifteen to thirty feet in diameter, or larger. The size of the central cone is proportionate to the size of the crater, ranging from about eight, to eighteen inches tall.


Fairy rings are lightning strikes that made shallow craters with central peaks. Nothing grows inside the strike zone. The darkest areas are covered in broken rock, except where lightning has excavated the craters.

The strikes especially cluster where black rock crusts over the sand. The lightning seems to have punched through, scattering rock and leaving the craters bare, where nothing grows.


Whether the lightning is attracted to the rock, or the rock was made with the lightning isn’t known, but the rock provides a clue. It appears the lightning came in a coherent event that peppered the land, punching through and shattering the rock. That, at least, is how it appears.

What amazes is the number of them clustered in particular areas. They rarely overlap, spaced fairly even, but randomly apart. There are hundreds of thousands, if not millions of them scarring the land just south of Comb Ridge.


There are regions around the world where features like these carpet the land for hundreds of square miles. They are seen in desert lands especially, since there is little undergrowth to obscure them. The next image is from Namibia. Here the features connect with filaments of stream beds. But note how they connect in linear arrays, and branch radially like little stars. They are electrical discharge patterns.


Each feature seems to be a shallow basin, or spring where water collects. Map resolution doesn’t allow better detail. These features are larger than the Arizona features. Many cover several acres.

Much of the country of Uzbekistan is carpeted with similar features, as the following images from a small portion of eastern Uzbekistan show.


The Uzbekistan features are larger and more numerous still. They also appear to be shallow basins where the geology is distinctly changed, and there appears to be a source of water. In the last image, there appears to be a home, or ranch with a livestock tank, well, or catchment at the center.

It makes sense that water is found where lightning has struck. Subsurface water is a source of ionization that intensifies charge density, and therefore the electric field, attracting lightning to it’s location. Standing surface water won’t do that because ions have no point to collect – they spread evenly over the surface of the water. But subterranean water is trapped in the earth, where ions collect and build concentration, locally intensifying the electric field. Pits, craters and rilles formed by lightning leave depressions over aquifers that are natural for springs and wells.


There have been times in the past when electric storms were far more severe than we experience today. That is one cornerstone of Electric Universe cosmology – that cataclysms in the past have an electrical cause due to events in the Solar System. Mythology records Thor’s Hammer, Neptune’s Trident and Zeus’ Thunderbolt, along with stories of the heavens in chaos.

To understand enigmas of the past requires first understanding what the environment was like. Are these carpets of lightning evidence of what the ancients experienced? And if so, is there other evidence besides stories from past epochs?

The only way to protect against a storm so intense is to get below Earth, or shelter beneath something that will serve as a lightning rod to route current to ground safely.

A lightning rod is a conductive path for current to reach Earth. It channels current to ground so it doesn’t spread out and reach you, and the things you want to protect. It provides a Faraday cage, or zone of protection, because it is more conductive the current flows through it instead of you.

So consider the function of standing stones. The megalithic stones erected thousands of years ago in circles and causeways. Or erected in dolmen formations with roof stones, as if refuge from demons. Never mind the mystery of how they were built with such gargantuan blocks of stone – that will be the subject of another post some day – but why were they built. That is the enigma we need to solve.

 I believe they did it for protection, and we need to take heed of that.

They are usually made of granite. Granite is an excellent conductor, more robust than a metal rod. Granite is a blend of quarts and other silica crystals. Crystal is more than a passive conductor, it’s piezoelectric, so actively creates charged pathways for current to flow.

Standing stones and megaliths would glow with St. Elmo’s fire under intense electrical stress. They would send active plasma streamers to draw current from a sky turned electric, attracting lightning and connecting it to ground.


So, perhaps Dolmens, megaliths and standing stones actually were protection from demons in the sky. Perhaps this explains why megalithic structures are so closely fitted of giant stone to make positive contact everywhere. Maybe it’s why copper and bronze connectors were set between stones, not for structure, but for electrical continuity.

Tiwanaku-Interlocking-Piece-between-stones-Pumapunku-200x200If there is no low resistance path offered by a lightning protection system the high voltage current from a strike will divide to follow every conductive path to ground it can find. Currents will pass through materials normally considered insulators, instantly generating heat. Porous material can shatter violently as air inside expands with super sonic speed. Material containing moisture can explode more violently as water is flashed to steam. Other materials melt, or burst into flames.

Stone, and in particular granite, is well suited for the task of lightning rod. Seamless continuity would be the most critical factor in using them for that purpose.

Nicolas Rénac – Walls of Sacsayhuaman

That seems to be the case. Ancient megalithic structures are typically unadorned. Unlike temples, or tombs, they are not covered in symbolism, or art. They appear functional, purposeful, like something with industrial intent.

And they required the utmost care to construct, with tolerances that go far beyond cosmetic appearance. Walls and ramparts are often built of stones with beveled edges, perfectly fitted to prevent water from seeping into cracks. They were made that way to provide a current path, prevent side flashes from the walls, and to prevent water getting into cracks to cause arcing and blasts.

The close fitting of stone in jigsaw puzzle shapes isn’t really required for any other reason. It is believed they are constructed that way to withstand earthquakes. But why? To avoid death from an earthquake, one should stay away from standing stones in the first place. It makes far more sense the stones were constructed that way to protect from lightning.

Another clue may be a strange feature shared by megalithic structures around the world – knobs. Knobs are odd protrusions of rock on some megalithic stones.

It’s easy to understand how they got there. As stones were excavated from a quarry, they were left attached at the side, or bottom for support until rough shaping was complete. Then the attachment point would be broken to remove the stone, leaving a knob jutting out.

Companion knobs – the other side of the attachment point, can be found in the quarries. Unfinished works still have attachments in place, proving their original purpose.

Some also speculate the knobs were left in place to aid in lifting and maneuvering the stones. No doubt they provided an easy grip, or attachment point for a loop of rope, and were no doubt used that way. But for such master stone cutters, who fit stones so closely a knife blade can’t find a crease, it seems odd they would leave knobs jutting out of the finished work.

At the end of this article is a video from vlad9vt which shows photos of many megalithic sites and quarries which displays evidence of the knobs function as attachment points. Watch his film and you will see many examples, but finish the article first so you can judge my new theory.

It is curious to me why they were left on some stones, but not all stones. In some they have been ground away, and on others left protruding. Sometimes they protrude in seemingly random places, and sometimes in a pattern that might be considered decorative. They seem to be more prevalent around passageways and gates. They also seem to be on the lowest, or next to lowest course on stone walls; or the upper course, overhead, particularly in passageways.

I’m thinking they were left purposely to create side flashes, directing excess current away from the doors to flash harmlessly to ground without snaking through the passage itself. Or to divert side flash away from the foundation, or passage, to prevent current finding it’s way to occupied areas.

The Connection…

Megalithic structures were built in a time we only know through mythology. They were built to withstand the great wars of gods that legend tells of. They were built to withstand screaming winds, tidal waves and quaking earth. But electrical storms were the primary reason for megaliths. They carried current to ground from layers of electrified plasma pressing down against Earth.

Archaic storms would have been immense compared to a hurricane today. Caused by a Solar System awash in energy, the Earth responded with induced currents. The atmosphere stacked into layers of differing plasma properties, as dust, soil and water ionized on the ground. Giant currents connected Earth and sky to generate thunderstorms that evoked gods and demons.

Wooded areas would have erupted in firestorms. Volcanoes and earthquakes would have rattled the land. Winds would have screamed at Mach speeds, billowing smoke and ash to intensify arcing, like grain enclosed in an elevator. And lightning would have intensified, building in proportion to the electric field, creating currents that machine-gunned Earth in megaton blasts.

Atmospheric ionization was held at bay by standing stones migrating the flow of electricity through them. They acted like tent poles, holding back the lowering sky, the way mountains hold storms above a valley.

That’s why storms on the plains and low lying islands are so low to the ground, where the clouds seem just above tree-tops. There are no mountains to raise the ground voltage gradient high into the atmosphere to attract current, so the clouds close the gap by lowering closer to the ground.

Crops, stored grain, or animals sheltered beneath stones would have found protection from electrocution, and the winds and heat of the electrified plasma coursing above. Megaliths around the world show evidence of magnetic and electrical flux, charring and even vitrification. Many appear to have exploded.

7868243390_c2aca589ea_nWhere possible people would have taken refuge underground, hiding beneath cliffs, in caverns, or in shelters they dug.

Stones and megaliths were set to protect precious lands, crops, water sources, food stores and huddles of animals they couldn’t take to the caves with them. They had to place them so there would be something to come back to – to carry on life after the storm.

They set them in fields and on hilltops, where they could work with the landscape to protect the area from obliteration. They provided a degree of refuge from storms bearing down with blistering peels of lightning and electric winds.

Or at least that’s what I think. Enjoy the video and resources below to learn more about lightning and megaliths. See if you discern a pattern to prove the purpose of the stones. See if you see what I see.

From vlad9vt

Lightning – it’s more powerful than you think…

Don’t forget the like button below! And please share with your friends.



Chelyabinsk, Tunguska and Arc Blast

Electric Universe theory has long argued that large meteors striking Earth is a rare thing. It’s not that rocks don’t fall to Earth, it’s just that something has to happen first. That something is electrical discharge.

Because the electrical charge of a body in space is not the same as Earth’s, something has to give when they come together. Electrical potential has to equalize. That occurs when the meteor makes electrical contact with Earth, not when it actually impacts.

Craters everywhere; the Moon, Mar’s, Mercury and beyond, as well as other-otherworldly terrain features, display the earmarks of electrical discharge more predominately than impacts. In fact, EU theory suggests the asteroids and comets themselves are a result of electrical discharge between planets. They are debris from discharges that made the craters – not the cause of the craters.

The larger the meteor’s mass, the larger the potential difference will be. Electrical discharge is likely to blow a big meteor to pieces further from Earth than a small one. Damage is caused by the shock wave from the meteor, not the left-over pieces of meteor impacting Earth.

That is the case with the two largest meteor events in modern history: Tunguska and Chelyabinsk. Chelyabinsk exploded in an air-burst, as witnessed by thousands of people. It’s long been suspected Tunguska did too, since no pieces of meteor were found. By all evidence, Tunguska appears to have been a shock wave from an exploding air-burst meteor entering the atmosphere at supersonic speeds.

Since the Chelyabinsk event was witnessed and filmed by so many, there is evidence of how the air-burst occurred, and how it is predicted by Arc Blast theory.

Arc Blast proposes certain geologic features are the result of shock waves created by supersonic winds. It is predicated on the fact shock waves are conduits of electric current. A shock wave suddenly spikes the density, pressure and temperature of the medium it travels in. It also spikes ionization, creating a charged wave-front of voltage higher than the surroundings.

The charged shock-wave is what causes the meteor to explode in mid-air, as this slow-motion film has captured. First, look at these still frames to see what’s happening.

Chelyabinsk meteor streaking through Siberian skies…
A vertical sheet of condensation appears ahead of the meteor – it’s not a camera effect.
As the meteor enters the column of condensation, both meteor and column brighten,
Then brighten again all the way to the ground – it’s discharging electricity.
Again it brightens with its tail still in the glowing condensation column. See the columns bottom is almost as bright as the meteor.
Then it explodes, sending a bright triangular flash down the column to Earth. Note the flash is behind foreground buildings where the condensation column was in previous images.
The shock of the discharge raises dust, but the foreground buildings can still be seen.
The meteor flashes a final time with a bright column beneath it, as the first column vanishes in the dust cloud.
And then it’s gone
A few small pieces of rock were found.

So what happened here?

That column of condensation was the shock wave – the bow shock ahead of the meteor, making contact with the ground and reflecting to form a standing, reflected wave.

Because the wave carried temperature, density and charge, it ionized the air creating the condensation column through the standing wave to ground. When the meteor struck the column, it made direct connection to ground through the conductive standing wave-form and began to discharge. The discharge flashed several times through the column, and perhaps established a second path to ground, before the charge neutralized with the meteor fully vaporized.

This film of the Chelyabinsk meteor is visual evidence of Electric Universe theories. The dynamics of comets and meteors bear this out in every other respect, as well. Look deep into the Tunguska mystery, and the evidence and eye-witness accounts support a shock wave/electrical discharge event.

Shoemaker-Levy 9 strikes Jupiter

The same can be said of the Shoemaker-Levy 9 comet that struck Jupiter. The explosions occurred in Jupiter’s ionosphere due to electrical discharge. So concludes Wal Thornhill who discusses the many points of evidence in the linked video. He describes how the comet fragments glowed bright as they approached the planet, how the planet’s polar aurora brightened when the comet made contact, how radio emissions were received from Jupiter during the event, and he provides visual evidence and an explanation how and why the explosions occurred in the ionosphere due to electrical discharge.

As quackademia’s grip on the theory of uniform evolution is eroded by overwhelming evidence of catastrophic upheaval in Earth’s past, it’s become fashionable for roguish scientists to look at meteors as a cause. Data from geologic strata, ice cores, sea level and fossil remains tell of periods when extreme environmental conditions prevailed. There is evidence of floods, winds, earthquakes and volcanoes – huge compared to anything in modern times.

That the demise of Cretaceous dinosaurs is attributed to the Chicxulub meteor is accepted wisdom, simply because there is a hole in the ocean floor. As ‘Climate Science’ is recognized a failure, and geologists find more holes in the ground, I fear scientists will stop attempting to correlate every climate hiccup in the record with carbon emissions, and begin to correlate with the holes in the ground.

But it’s a bit too convenient to jump to the conclusion meteors cause every catastrophic event. There is physics to consider, and physics says two sufficiently large and differently charged bodies are going to discharge when they make electrical contact, not when they impact. How discharge occurs is an arc blast through the standing waves made by the bow shock reflecting from Earth. You just saw visual proof, unless there is a better interpretation.

The physical consequences are different. Kinetic impact will have different secondary consequences than an electric shock-wave impact. Knowing this doesn’t mean a big meteor won’t destroy a city, or a hemisphere one day. Death by electric shock-wave is still death. But it may clue us how to protect ourselves. It may be easier to survive than what is believed an impact will do.

It also may clue us how to protect Earth from a large meteor in the first place. Give it something to discharge to – before it reaches Earth. Place a minefield of asteroids in it’s path – pre-loaded with ionic charge and long wire antennas to ensure contact.

The Chelyabinsk film follows, with special thanks to Don Kress for providing it.


Radio Control

Mention of the phrase ‘RC’ brings the smell of gas and freshly mowed grass, still wet from the sprinklers, together with the ‘Brrr…brrr…brrrriya-a-a-a’ sound of starting a single-cylinder engine. The memory is a blended life experience in a single draft. Thought of any one brings the taste of all together – it’s a personal memory meme.

We didn’t actually have RC airplanes, but line controlled planes that required standing in one place, flying in a circle, attached to the model by control strings. That seems quaint in the age of electric drones and ducted-fan jets, but they had the tactile feel of direct control. You could feel the plane go slack on the lines and have plenty of time to panic.

The meme is still the same. It conjures up Saturday mornings at the schoolyard, when you could take over the baseball field and fiddle for hours starting the engine for a ten minute flight.

If luck was with you, no essential part failed during the first flight, and two, or three more flights might follow, with the engine becoming increasingly difficult to start until finally refusing altogether.

Other kids would always come to watch. They often drifted away before the engine started, nevertheless, a few stuck around giving unwanted advice, to be rewarded with an opportunity to lay in the flight path and be strafed.

Today, most schoolyards and parks won’t allow such activities. Noise ordinances, I suppose. I hardly even flew those planes. Just the ambience the hobby creates is engaging. But there are hard core enthusiasts who take the hobby to a state-of-art I never imagined. Just watch these amazing craft and feel like a kid on Saturday morning.

If that makes you want to go flying… buy an RC plane and have some fun, and support The Daily Plasma by buying at Amazon through the links below.

RC Airplanes at Amazon

If you liked, please hit the ‘like’ button below! And share with your friends.



Electric Weather

Re-posted courtesy of the Thunderbolts Project

A three part examination of electricity and it’s role in severe weather.

Thunderstorms exhibit precisely the attributes of plasma discharge between an electrode and ground. I show that laboratory produced coronal emissions from a point electrode, through an air gap, to a flat plate electrode, produce the same effects as a thunderstorm. I correlate these effects with the morphology of a super-cell and the lightning, rain, downdrafts and vortex winds they produce.

Yes, dear reader, everything is electric.

Related articles:

Nature’s Electrode

The Summer Thermopile

Tornado – The Electric Model


Re-posted courtesy of the Thunderbolts Project

A two part discussion of volcanoes and electricity. I explore the Pinacate shield volcano in Sonora, Mexico. It lies near the border, at the tip of the Sea of Cortez. It is an especially pristine and striking volcanic field.

It’s best known for huge maar craters, which appear to involve electrical discharge. The maar’s have rim craters, which is a feature that seems out of place in consensus theories. The crater rims appear to be sucked inward from the rising eruption, rather than blown outward as typically believed.

There are many electrical features in the Pinacate reminiscent of what is seen on the Moon, Mars and Mercury. Of course, Electric Universe believes these to be electric, too.

I contend these are from electrical discharge from beneath the surface of the Earth.

The related article is The Maars of Pinacate

Arc Blast

Re-posted courtesy of the Thunderbolts Project

Here is a three part presentation on Arc Blast. It’s a theory on mountain formation based on evidence of coherent, harmonic shock-wave features found on mountains everywhere. Mainstream science contends these are features created by water erosion. Take a look at what I present and decide for yourself. Consider how water can erode rock into layered, harmonic forms.

Related articles:

Arc Blast – Part One

Arc Blast – Part Two

Arc Blast – Part Three

The Monocline



Gravitational Lensing

Re-posted courtesy of the Thunderbolts Project

This is my first “Space News” presentation. This link is to the related Thunderblog.

When I began writing for Thunderbolts I didn’t have any theory of my own. I was simply learning and trying to understand whether Electric Universe theory could stand on it’s own, and if mainstream theories could be wrong when they claim so much ‘evidence’.

Gravitational lensing was the first confirmation of Einsteins theory of General Relativity. Sir Eddington showed that light from deep space objects bends around foreground objects. But is it because of gravity? I present the work of Dr. Gupta, and others who demonstrate the effect of lensing may just be the result of diffraction through matter in space. No gravity is required.

Like all consensus theories, other explanations can be found in classical physics. The consensus won’t tell you this, however, which is why they shouldn’t be taken as fact, and alternatives must be considered.

EU 2016 Conference

Presentation at the EU 2016 conference in Phoenix.

This is my first EU conference, where I present Arc Blast, my theory of how electrically generated winds create mountains. I show evidence in mountain features that display coherent, harmonic wave forms produced by supersonic shock waves, and theorize how they were created.

I provide a new presentation in 2017 that somewhat modifies and expands the theory of how such winds and shock waves were generated. Like all scientific inquiry, new data brings new meaning. The 2017 presentation is available at

Re-posted courtesy of the Thunderbolts Project.

Gila Bigfoot – The Long Road Home

Episode 4 – The Long Road Home

Ginger and I camp at the lake after a day of Bigfoot hunting. Along the way we stop to check-out a likely granite outcrop in a meadow. As we leave the truck to cross the meadow, I hear an unmistakable whoop from the tree-line, and an answering whoop from the rocks. We change our mind about crossing the meadow.

It’s late season, so we are alone at the campsite. I’m playing a CD while filming, which isn’t appropriate, but the publisher notified me they were okay taking the advertising revenue. I don’t think they will get rich from it.

The next day we head home. This is the last trip for the year. I stop to look at one last tree structure and leave the truck in drive, nearly getting run-over as it rolls backwards while I’m at the tailgate.