Tag: Electric Universe

The Keystone Pattern

Gareth Samuel is a science educator and frequent contributor to the Thunderbolts Project. He also produces an outstanding video series on Electric Universe theories that aims at the very heart of science. He chose the perfect title for his YouTube channel: “See The Pattern”. If a repeating pattern emerges from Nature, we should recognize it as significant. To truly understand it, we should be able to explain it’s cause and effect and reproduce it. Seeing the pattern and discovering it’s cause and effect is what science is. The “proof” is in recreating the pattern. Not by subjectively programmed and data-fixed mathematical models, but by physical demonstration of the physics involved.

This essay presents a challenge for those with a knack for playing with electricity. I’ll show you a pattern. I call it the “Keystone pattern” because it is a pattern of “key” significance. It’s effect can be found in geology, so it’s written in “stone”. It is a pattern that results from electrical discharges. I will show you this pattern and explain it in the best, plain-language detail I can. Then it will be up to you to reproduce it. It shouldn’t be hard.

In fact it’s been done before. You may know the pattern as the “crooked smile” if you’ve followed the Electric Universe for several years. Michael Steinbacher and Billy Yelverton produced the pattern in image shown. I believe it was Michael that called it the “Crooked Smile”. I’m giving it the “Keystone” name because the “smile” is only part of the pattern.

“Crooked Smile” aka “Keystone Pattern”

Michael intuitively understood this pattern was the result of a multi-phase discharge. He was trying to reproduce the shape of Valles Marinaris on Mars. He assumed, correctly, that by creating a discharge in Billy’s laboratory with the proper set-up, they could reproduce Valles Marinaris, and they did. Unfortunately, they didn’t explain their experimental set-up, so we’ll have to guess.

My guess is they laid a metal plate on a table, to form one electrode. They covered the metal plate with a dielectric plate, probably glass or plastic, to add resistance and enhance the reactive power. Then they hung another electrode a few inches above the plate and covered the plate in sand.

I believe they then took two leads from a 3-phase power source, stepped them to high voltage and connected one lead to the plate and one lead to the hanging electrode, creating a point-to-plane electric field between two out-of-phase circuits.

The pattern is caused by electrical induction currents that spread out in the horizontal plane from the vertically oriented, multi-phased discharge between the electrodes. These type of induction currents are called “reactive power” currents. You can think of it like aiming a firehose at the floor. The stream of water from the nozzle is an analogy for the vertical discharge current. In terms of electricity, we call that real power, because it’s going where we want it. The water that splashes from the floor are reactive currents, or reactive power currents in the case of electricity., that are splashing across the electrode plate.

The stream of water hitting the floor is like electrical current hitting resistance. Reactive power is the energy of currents that get re-directed by resistance. The “splash pattern” that reactive power makes is peculiar, and very specific to electro-magnetism. Unlike water that splashes away vectored by kinetic energy and gravity, an electric current generates moving electric and magnetic fields that vector its reactive energy. So, it generates a repeating fractal pattern. Reproducing it in the lab is as compelling as scientific evidence can get.

It’s also compelling when you can find it in Nature over and over again. We are going to use it to identify several electrical craters here on Earth, and doing so dispel the silly notion that Earth has been bombarded by asteroids and comets. Here is the Keystone pattern:

Keystone Pattern

The pattern occurs over the duration of the discharge, while it is in contact with the ground and making a complete circuit. Over time, the voltage vector of reactive power shooting out from the focal point, rotates around the pattern like the second hand of a clock, pointing to all points on the compass, only it sweeps around counter-clockwise instead of clock-wise. The current that follows this voltage vector lags behind it, like the minute hand of the clock chasing the second hand, but never catching up.

At the same time magnetic fields are pulsing outward in concentric waves from the focal point and inducing current to follow it. This sets-up an interference pattern of positive and negatively charged regions around the circle formed by the induced currents, where the sand grains which also carry charge are either attracted or repelled. It is much like a cymatic pattern created by a particular frequency of vibration, only this is caused by induced, out-of-phase currents. Where the charge on the plate is the same as the sand, the sand is levitated away, which is technically called sputtering, to region of opposite charge where it sticks to form a mountain.

The Red Cross – represents primary reactive currents that “splash” at particular vectors from the discharge focused at the center of the X. C is a filament of electric induction, or capacitive reactive current. L is a filament of magnetic induction reactive current.

The Green dashed circle – represents “stray capacitance” generated in concentric rings around the focus of the discharge by magnetic fields. These are rings of step-potentials expressed as hills and valleys, mountains, or crater rims in geologic formations.

The Blue Lines are the “crooked smile” and portray induction currents following the electric, or magnetic fields, or both.

On the left hand quadrant formed by the Red X, electric field induction dominates and the current flows straight to the encircling ring and makes a 90 degree turn to follow parallel to the ring, because the capacitor ring is a standing potential wave in the electric field.

The quadrant on the right is the magnetic induction dominated region, so current streams out perpendicular to magnetic field lines, induced by the magnetic field. These lines intersect the green rings at 90 degrees.

In the center, through the top quadrant are Bars of Blue. The bars are unipolar winds that drag straight across the focal point of the discharge. They are probably the easiest to identify feature of reactive power currents.

The “crooked smile” is a fractal circuit pattern of capacitive and inductive eddy currents in these particular quadrants of reactive power. The direction of current flow can go either way, depending on polarities, so I don’t usually show arrows in diagrams.

The top and bottom quadrants are where reactive currents form updrafts and downdrafts. The Yellow Star in the top quadrant is a downdraft current, and the Pale Green Swirl in the bottom quadrant is an updraft. These would be tornadoes and downbursts of plasma wind and lightning. They generally leave circular patterns of depressions, or hills. The next image shows the same features more fully annotated.

Note how the right-side magnetic induction currents (IL) meet the encircling capacitance at 90 degrees, while the on the left, capacitive induction currents (Ic) bend 90 degrees to parallel the encircling capacitance. Note also that the upper half of the right and left quadrants are more inductive, with tendrils crossing perpendicular to the encirclement, and the lower halves are more capacitive, with parallel flows. The left, or capacitive quadrant will sometimes develop “Z” shaped currents, with current alternating it’s vector between magnetic and electric fields.

The top and bottom quadrants produce up and down currents (through the page) that encircle the crux of the discharge in a ring, or toroidal current. The Yellow Star and Green Swirl are the face and footprint of this current. For those interested in math and fractals, phasors are calculated with complex numbers. The complex numbers have irrational number multipliers in the equations that apply to these top and bottom quadrants. So it can be said that weather is irrational.

The action of eddy currents is better understood with the following .gif illustration that portrays the magnetic flux generated by the discharging current. The left-hand side of this ‘compare’ image shows the field lines of magnetism created along the ground plane at 90 degrees to the discharge. The right-hand side (you can slide the divider to compare either side) has black lines indicating the path of induced, reactive eddy currents created by the magnetic flux.

Magnetic field and reactive eddy currents.

I first discovered the pattern while examining the Laramie Mountains in Wyoming. The pattern can make a crater, or a mountain, depending on polarity. I published two articles on these mountains last year. It wasn’t until this year I recognized that pattern I found was the same as Michael’s crooked smile.

Laramie Mountains, Wyoming.

The Laramie pattern was caused by a plasma meso-cyclone – with it’s central updraft representing the real power discharge – or the firehose current – a positive ion current flowing up from the ground into the storm. The ground was negatively charged, and so, positive ionic matter from the winds collected there by static attraction, adhering to form the mountains. The mountains retain the shape of the winds that deposited them, which are in the Keystone pattern.

The pattern can be quantified and mapped with something called a phasor diagram.

Phasors are 3-D graphs of vectors. For electrical circuits, they are used to determine the amplitude and direction of energy flow, or power at a given time. In alternating current, multi-phase systems, there are two or more waves out of phase with each other. Phasors are used to determine the resultant vector for the flow of power, voltage and current when there are multiple waves.

Manmade circuits work best when the energy sent ‘down the wires’ is aimed straight and doesn’t splash. Although some reactive power is needed, unwanted “splashing” is inefficient. It shows up as heat loss, signal noise and can even create plasma streamers from high voltage power connections.

We manage this with physical things like insulation, capacitors, transformers and generators to control frequency and amplitude and maximize what is called “real power”, or firehose power, as opposed to “reactive power”, or splashing.

Nature lets energy splash all over, and it results in plasma winds, storms and tornadoes. It also results in rock and mountain formation.

The next image you will recognize as the Richat Structure. The ‘compare’ image shows the basic Keystone pattern features. Wind direction is verified where possible by the triangular faces of tetrahedral hills formed in supersonic shock waves, and rock dikes (not marked on this image) caused by wind and shock wave.

The Richat Structure. Green should be labelled Stray Capacitance, not Magnetic field. Move slider to compare.

The Richat was created by a plasma tornado spinning like a buzz-saw between two opposing jet-streams. Tornadoes have a down-streaming, core wind inside the spinning updraft. A tornado is called a Marklund Current, and it has a central, core downdraft of ionic wind. That is why tornado genesis begins with a descending column of condensate meeting a rising swirl of dust. It’s a connection being made to complete a circuit of opposing positive and negative current flow.

The Keystone pattern, in the case of the Richat, was caused by induction winds that hugged the ground, being fed by the core downdraft, and blowing out beneath the up-drafting whirlwind.

The next images shows the wind pattern of the whirlwind and the shock waves that resulted from the induction winds crossing under the whirlwinds. The winds cross orthogonally and leave cross-hatched shock features.

The Shoemaker crater in Australia provides another example of the Keystone. The crater doesn’t show signs of rotation on the ground, but the Red Cross of induced ground currents formed a rock dike that is fairly pronounced, as are wind patterned mountains at the Green Encircling ring of capacitance forming the crater rim.

Shoemaker Crater, Western Australia

Induction features can be either anodic, or cathodic. If the ground is charged negative and a wind full of positive ionic matter blows over, a mountain of adhering matter will form. If the negative ground is exposed to a ground-to-ground discharge, it will sputter, or blast earth away and leave a depression. If the ground has positive matter in it, that will suck to the discharge and fuse to form a rock dike. Examples of rock dikes formed by ground currents are shown in the next images.

Anode and cathode features will appear alternately as current passes through the encircling rings of capacitance, making interference patterns in hills and crater rims.

If you are wondering, are these patterns on the Moon? They are not. Lunar craters are from Direct Current (DC) discharges, because the Moon is not alive with a geomagnetic field like Earth is. Earth is a multi-phased circuit, and these patterns result from multiphase Alternating Current (AC) interactions.

There are several craters that exhibit the fast unipolar winds crossing the crater rims caused by induction across the Blue Bar. Here are three in the next collage of images.

Blue Bar induction winds. Pingualuit Crater, Quebec

No one crater exhibits every feature perfectly. Some features are covered by sand, water, farms and cities. Some have eroded and some simply don’t develop in every condition. The patterns develop from reactive currents in both the air and ground. There is, however pattern consistency when several features are evident in the correct position with respect to the quadrants of the phasor. Here are several craters from around the Earth, most of them falsely attributed to meteors. They are the result of a discharge current flowing between Earth and sky. All exhibit aspects of the Keystone Pattern.

Note the “Q” in each ring. At roughly the five o’clock position, each crater exhibits a hooked shaped slash, or other anomaly through the ring. Of course, I’ve oriented the pictures so they are consistent, but note there is also similarity in the pattern of river channels connected to the ring to either side of the “Q” mark in most of the craters. So, there is a quick and dirty way to identify the Keystone pattern. Look for the “Q” with a lightning bolt through it.

Truth is always holistic… we’ve been trained to think our consciousness is constrained to the brain. It’s not.

Cheers,

The Holy Trinity: Energy, Information and Truth

Call it the Trinity of Natural Philosophy if you like, not to confuse with the spiritual. But it is one and the same, in the end, because it is all one circuit. The Holy Trinity is Energy, Information and Truth. That is what physics comes down to.

Fundamentally, energy is the thing physics examines. We examine it, fundamentally, by understanding the information carried in its amplitudes and wavelengths. One could say, energy, and it’s transmission in analog wave-forms constitutes information – or energy equals information – full stop. And finally, there is only one true interpretation of the waveforms. We call that the Truth.

Hence, Energy motivates, waveforms transmit as Information, and Truth is the hoped-for consequence – the Holy Trinity of physics. That’s one meaning anyway. The other meaning is God, and the Trinity of Father, Son and Holy Spirit. And as I said, they are one and the same. So let’s not beat around the burning bush, this essay is a proof of God – and physics.

There is a silent axiom to Electric Universe cosmology. That is, that the cosmos, in it’s entirety, and in it’s every part, is a circuit. We say “everything is electric”, but what that intrinsically means is that “everything is a circuit”, because one is the other. And one can readily relate at any scale, such as the fact that we humans are a complex, biological network of electric circuits that act and think as independent entities; or that a thunderstorm is an electric circuit; that the actions of energy at the quantum level display the “interconnectedness” of circuitry; same thing at the scale of the Solar System, the galaxies, the cosmos – circuits nested within circuits.

These self-similar patterns go on, right into the rocks of Earth, because the sub-atomic particles that form the atoms that form the crystals in rocks, like all matter, is made of standing waves of energy. The irreducible “particle” is not a product of “duality”, but of one thing: energy, trapped in a 3-dimensional circuit we call a plasmoid. The illusion of matter is a standing wave of energy, trapped by capacitance in a circuit. E=Mc2. Stop the energy in a standing wave and you get matter. It’s a phase change. Matter emerges from energy. It’s “condensed” energy created by capacitance in the circuit. This is just physics, folks.

Capacitance generates an electric field in opposition to the circuit it’s in, and interrupts the flow of energy, making a standing wave of energy. A plasmoid is a whirling dervish of energy, but it cocoons inside it’s own magnetic field, and shelters like a snail inside shells of spherical capacitance. It’s an electric bubble with a skin of capacitance and looping, magnetic braids of hair. Like a bubble in the wind, or a snail in the sea, it is in constant feedback with it’s surroundings.

It has it’s own internal electric field encapsulated within its spherical capacitance, which resonates with the ambient electric field. It is, in electrical terms, called an electret. An electret inducts energy from it’s surroundings with it’s magnetic field, stores it and sends it back in an open circuit fashion, the spherical capacitance being the means of storage. Hence, it is both an independent circuit of standing waves (a particle) and part of an ambient, or parent circuit that is in constant feedback with it, because it’s a part of the parent waveform, like a baby in a womb, a bubble in the wind, or a snail in the sea.

A circuit is an entity whos actions remain coherent with the energy of its parent circuit. Like Escher’s picture of the hands drawing hands, the actions of one influences outcomes in the other. Every circuit is fed energy from the parent circuit, does work for the parent circuit, and what energy it loses to entropy is re-organized in the parent circuit.

It has mass due to the dielectric energy trapped in spherical capacitance, and hence cannot exceed the speed of light. But energy can. And the energy of the plasmoid always resonates with the energy that created it, because it retains that sheet music of frequencies. It always echoes it’s parent’s energy. We call that quantum entanglement; interconnectedness; spooky action at a distance; “as above, so below”; the metaphysical, or if you don’t understand it, duality.

Circuits are why we see repeating self-similar patterns everywhere in Nature. Because circuits in Nature self-organize in fractal patterns of magnetic and electric induction as the flow of energy tries to balance itself with changing electromagnetic fields. The polarizing forces of electricity and time dependent, feedback-inducing magnetism play the same games again and again, like football players with a set piece of plays. They may switch-up the order of play, advance the ball in one instance, lose the ball to the opposition in another, but the motion of the players running set plays with the same boundary conditions, regardless of order or the other team’s feedback, over time begins repeating similar patterns.

The patterns are governed by the mathematical rules of dipoles, phase angles and frequency, yielding such “mysteries” as finding the golden ratio everywhere in Nature. Granted, much feedback, noise and destructive interference confuses the signal and results in chaos, which can’t be called simple. It’s only simple if you stay focused on root cause, and you ask questions pertinent to the truth.

Fractals are not just three dimensional geometries. They unfold over time, and so, are four dimensional “space-time” topographies. That is why history seems to repeat itself. It is why we are all OCD to some degree.

Besides being fractal, circuits think. Circuits cycle, they switch current paths, change frequency, amplify, cancel, resonate, calculate – not of their own accord, but in feedback with their environment. They receive and transmit with the bigger circuit they reside in. There is always the bigger circuit. It does not control, but influences, as does any circuit feedback.

We are such bubbles of circuitry. Bundles of organic matter pulsed with plasma and electric impulses. Our complex collection of cells, gut flora, and structured fluids are, in fact, a bundled harmony in constant feedback with the environment. My daily melancholy rises with every sunset, amplifies on Sunday, and peaks in the winter. Mountains are mournful, deserts are dreamy, I am puny in the face of a storm and deep water is terrifying. Synchronicities fill my life. There are no coincidences. What are these moods? Why does this happen?

Let me give you a hint: it’s not because of gravity. We are intimately, and sensitively interconnected to all around us. Unfortunately, many people limit their senses to the ones consensus science tells them to use. We have capabilities to sense beyond those recognized by the consensus. Our entire bodies are antennas to the frequencies around us, regardless of whether we are conscious of them or not. One can acquire better awareness. Considering all the frequencies in the cosmic bandwidth, and all the possible harmonies that could result, it boggles the mind what intelligence must reside around us.

Energy is what motivates. It travels in frequencies and amplitudes. Frequency and amplitude is raw information at it’s fundamental, irreducible level. Therefore it is the irreducible Truth. Knowing the Truth is the consequence of resonating with the cosmos and comprehending. That, and only that signal is the whole truth, any other signal is disinformation. Hence, there is only one truthful signal, and that is direct from the parent circuit.

There can be only one complete circuit that includes all circuits, that encompasses all energy, time and space, and knows the conduct of every minor circuit loop within it. Call it what you want, but God works for me.

That is why one can only know God in a personal way, where you speak directly with Him. No priest, pastor or Angel, let alone scientist, politician, or media can do it for you; they can only pollute His message. God is the Cosmic waveform that we are in feedback with. He is the Alpha and Omega, beginning to end, the entire circuit and all energy that suffuses the space and time it encompasses. You are either receiving and transmitting in constructive resonance, or you’re not.

It really breaks-down the whole cosmos to a black and white contrast between good and evil. Your transmissions create either constructive, or destructive interference that amplifies the cosmic waveform, or defies it. No one ever gets it perfect. You always have the opportunity to try.

This is why Truth is Devine. Finding the truth, about anything, is to do God’s work. To relentlessly pursue truth for the sake of truth is to follow God’s path. This I know, having fallen-off path a few times.

They say God is love, but there is no true love without truth. Respect for the truth is the essence of love and empathy for your fellow man, your society and yourself. And therein you find God. It is true He is love, because love is truth.

That is the Trinity. God is Energy, Information is the Holy Spirit that informs our path through life, and Truth is Christ, the human embodiment of unflinching truthfulness in the face of constant evil – the Satan of deceit. Christ is God’s model for us to follow. Energy = Information = Truth, the Holy Trinity. I hope that clears things up.

This comes to me because of my father. I was pondering his death, which occurred many years ago, and how my Mother had concern over his salvation. Dad never shadowed the doorway of a church, except for funerals and weddings. He did not worship. In spite of my Mother’s strong Southern Baptist beliefs, my father, like myself at that time, was agnostic. So, I know it wasn’t that he was an atheist, he just didn’t feel he had enough information.

As my knowledge has grown, my mother’s wisdom has caught up to me. This caused me to wonder if my fathers doubts about cosmic provenance might impede his ascendance to the higher networks of nested circuitry. I realized that it could not, because my father had faith in truth, above all else. He may not have lived to learn the ugly truths we are learning now, but his pursuit of truth was sure. Faith in truth is faith in God. If one knows God, one recognizes the truth.

Faith isn’t a matter of convincing yourself to believe something. It’s coming to the truth, about yourself, what you’ve done, or not done, and making a commitment to follow the truth, and take responsibility for it like a human being, not a slinking alley-cat. Belief comes from knowing your energy is devoted to the path of truth. That path, and that path alone will reward the follower with eternal life. Anything else leads to eternity in a labyrinthine cul-de-sac of deceit.

Atheist’s ask why we believe, but they don’t question why they doubt. It’s because they just can’t handle the truth.

Cheers,

Shock Waves: Why they are important

Immanuel Velikovsky described worlds in collision, and correctly identified the physics of such interactions. They are electric. He was informed by classical physics, such as the work of Christian Berkeland, who half a century earlier discovered the polar aurora is Earth’s electrical connection to the Sun. Today, the Electric Universe community carries theories of an electric cosmos forward, it having been abandoned long ago by mainstream consensus in favor of no Aether, and a miraculous big bang.

We are at odds with consensus science beliefs. Besides the obvious, fundamental disagreements about Aether and gravity, and the plethora of differences flowing from that, we also have a fundamentally different way of addressing scientific inquiry. The examination of shock waves provides an example worth discussing.

Non-volcanic mountains all over the world were laid in place by winds and electric currents. I can’t confirm each and every hillock, but by and large, the mountains around you, wherever you are, were made by wind. They were plasma winds, charged with ions and free electrons, laden with dust and water vapor that carried the current within. Each wind-stream was a current. The dust and water was also charged. Dust was part of the plasma, and amplified it’s effects.

The ground was charged, too, as currents welled from the Earth like springs of water. In fact, much of Earth’s currents are carried by water, so springs of water and current were one and the same. Everything, or at least almost everything was charged in that environment; when the creation of Earth as we know it, with the basic shape of the continents we have now, occurred.

Now this brings up the first big difference we have with consensus science. Consensus science sees a collection of ions as a collection of charged particles that will ultimately recombine and form neutral matter. They either dissect it’s behavior into quantum probabilities, or address it as a bulk entity and ignore it’s inner workings. Either way, they miss the big picture.

We see a collection of ions as a circuit. It is a self organizing body, called plasma, that organizes through the actions of it’s frequencies, interference patterns and feedbacks. It forms membrane walls by capacitance, takes life from currents within, is motivated by electric fields, and reacts in feedback to it’s surroundings with magnetism. That organization is called circuitry. That is why geology, if looked at as part of Earth’s circuitry, totally makes sense. The patterns of circuitry between the earth and sky are evident.

This can be proven simply by looking at the result of shock waves on Earth produced by the plasma winds. The highly ionized plasma winds were supersonic and therefore made shock waves. The shock waves acted as wave guides for dust and current, piling the dust and fusing it into mountains.

To recognize this, all one need do is compare mountains of scientific results from supersonic wind tunnel tests to the tetrahedral shapes of mountains. The tetrahedral shapes, as well as numerous other geologic configurations in mountains, can be shown to be the result of shock waves. The morphologies – shape and composition of mountain features – can be shown to precisely match that of shock waves – and shock waves can be shown to produce the morphology of mountains, empirically.

It is a visual correlation. No math is needed. Of course, a thorough scientific inquiry would include forensic analysis to establish data on the energies involved, the wind speeds and the densities, chemistries and voltages. From this, mathematical models could be made to test and confirm the physics. However, that really isn’t needed to understand the basic circuitry.

Circuitry is a pattern. It is the pattern that informs us, not the math. We already have the math. It is the math of electromagnetism and magneto-hydrodynamics. The links between pattern and math are already known. With regards to shock waves and geology, the patterns are on the landscape to be analyzed. All that is lacking are people educated in the right sciences and willing to get the data and apply the math. Unfortunately, our small community doesn’t yet have such people.

It seems most people schooled in the right sciences prefer to have a career, and a prerequisite for that is accepting the consensus. There are geologists and earth scientists in the EU community (mostly retired people who don’t need a job and have the luxury to seek truth) who have some of the training to apply, but they don’t have backgrounds in aerodynamics. I have yet to hear from anyone who really understands shock waves.

We have electrical engineers who understand circuits, but only when they are contained by wiring and insulation. They don’t seem to know squat about shock waves, arc blast, stray capacitance, or fringing fields because their designs and equations are intended to eliminate these things. The plasma scientists who understand everything, can’t be bothered with geology, because the sexy stuff is outer-space. You know how important it is to know what a black hole really is. That will truly change our lives, right? It’s sexy, and interesting, but it’s not pertinent to anyone’s immediate future. Frankly, if I see an article with “Black Hole” in the title, I don’t read it, because I know whatever is said can’t be verified and I’ll forget about it the next day because it isn’t important.

Understanding the Earth, however, would lead to understanding and perhaps preventing, or mitigating catastrophic earthquakes, volcanoes and weather. It would give us an understanding, instead of a political agenda, behind climate change. It would tell us what caused past extinction catastrophes, and whether they might happen again. This is information that matters. This is information that saves lives.

So I’m giving a bit of admonishment to the scientists in our community for not taking responsibility – as scientists – and focusing on what is most important. But as Natural Philosophers we are very good. People like me, who don’t know all the physics, can still understand the cosmos, from the galaxies to the rocks beneath our feet. My own understanding of physics isn’t half bad, because I’m an engineer, but my knowledge should be described as “an inch deep and a mile wide”. My career required me to know enough about electronics and power transmission, as well as chemistry, geology and human psychology to manage a team building power plants. It’s the “mile-wide” that is important. That’s the other difference we have with the consensus.

The consensus requires specialization. The “big picture” is reserved for the few, mostly astrophysicists who, having spent their time contemplating black holes, haven’t a clue about the real world. They live in their cloistered, academic bubbles.

We have people who might not have a high school education, but they comprehend the universe more than those scientists do. That is because they “see the pattern”, and recognize it’s more important than math. If you have seen one Fibonacci sequence in Nature, you’ll always see it. You can’t un-see it, and there is no point in revisiting the math every time just to recognize it. It’s everywhere in biology, geology, chemistry, and the rest of the cosmos. Likewise the dendrites, filaments and capacitor interfaces created in the process of charge diffusion. Just look, it’s always there. So, we don’t need to beat a dead horse. The math is already evident in the pattern. We know everything is a circuit, therefore coherent, and the patterns are the result, not coincidences.

To the consensus, who look at computer screens instead of Nature, patterns can be coincidences, and therefore not reliable. It’s the same thing they say about eye-witness accounts. This is another big difference we have with the consensus.

Just take what I said about water and currents. Current welling from the ground will carry water with it, because water is it’s conductor and follows the current.

And compare with the concept of “fountains of the great deep” as described by the flood story in the Bible:

“In the six hundredth year of Noah’s life, in the second month, on the seventeenth day of the month, on the same day all the fountains of the great deep burst open, and the floodgates of the sky were opened.”

Source: https://bible.knowing-jesus.com/Genesis/7/11, New American Standard version

Consensus science ignores, and even denigrates the idea mythologies shed light on the truth. But we see mythologies as accounts, because we recognize patterns of plasma events in their telling. And this is corroborated in ancient art, petroglyphs and symbols.

Never mind the implausibility of Noah living six hundred years for the moment. The plausibility of earth gushing water while under electrical stress is something we should expect to happen, and we therefore give credence to the Bible and other ancient texts and mythologies as a record of witnesses. And we keep an open mind about Noah’s age, because we don’t know the effect of a heightened electrical environment on life. There is ample reason to expect, from fossil record data, that life exploded after extinction catastrophes at rates Darwin’s theories alone cannot explain.

Empirically, we know electricity can make plants grow faster, as well as crystals. High potential accelerates growth. Perhaps it also extends it. We don’t know, but we can see the pattern integrates electricity and life, and we can see the pattern of electric actions that created Noah’s flood. You can pick any other ancient mythology, of course, because each and every one has a flood account.

Consensus science can’t do this. They blinder themselves. They deny the possibility of the great flood, even though it’s documented by every ancient culture’s mythology. It’s the difference between smart, and wise – woke, or awake, as said in the popular lexicon.

Consensus science is reductionist. They take a clock and break it, then examine each piece to figure out what it is. We just look at a clock and say, that’s a clock, because we take a holistic embrace of data knowing there is purpose and pattern due to circuitry.

Another inescapable difference between us and the consensus is our sense of spirituality. Although, in the EU community ones spiritual belief is a personal thing, it can be said of the consensus that they proselytize for atheism. Their cosmos is a big cloud of particles from which intelligent life emerges as a consequence of those particles bouncing around. Energy always disassociates to entropy, and it’s all rather pointless. And they want us to know how pointless we are.

For us, circuits form life. We are individual bodies of highly evolved circuitry and free will. Perhaps the pinnacle of life in the universe, perhaps not. But we only experience a narrow portion of the cosmic bandwidth. We know there is circuitry beyond our ability to experience, for the same reason we don’t hear a dog whistle, or feel a radio wave.

We know circuitry is intelligence. That is what thinking is: circuits firing in your body, sending, receiving and processing signals. We also know that our internal circuits receive signals from the environment we incorporate in our processes. Feel, see, hear, smell, taste and the other one we get, but can’t detect. That is our connection to the Aether.

Earth is no different. My calculator thinks much faster than I do, because it has circuits designed to calculate. It’s not “alive”, of course, but it thinks. Earth’s circuits think. Every circuit thinks. The cosmos is a circuit. The cosmos has to think. By my definition, that’s God; the Alpha and Omega, from beginning to end, the morphology of a circuit. For me, this is an inescapable conclusion in the Electric Universe. And it came from recognizing shock waves.

It’s my mission to make everyone realize that shock wave patterns on mountains are as obvious, identifiable, laboratory verifiable and mathematically modellable as the Fibonacci sequence is in a pinecone. I have little interest in convincing scientists. I have tried and their eyes look past me. They adopt the blank look of a zombie, because they are programmed only to think in certain channels. My goal is to expand the bandwidth, and provide every person with knowledge you can see in Nature for yourself.

With that appreciation of Nature comes wisdom. When we can all see the pattern, we’ll stop funding consensus science and it will die on the ash heap of history. There is a century of bad science that needs to be thrown away, and a new frontier of science to be explored. One that will actually give us answers.

Cracks in Theory

Every butte has a crack, but not all cracks are beautiful. Though some are magnificent, ruler straight and parallel, some can be ugly, chaotic mangles. But there is a quixotic pattern to ugly cracks, so we must not discriminate. Whether they make lovely geometric shapes, or chaotic mangles, a study of cracks is essential Electric Universe science.

The reason is cracks are interfaces – boundary layers – and electrically, that’s where the action is. To understand any geology, the first thing to look for is boundary layers. Charge collects at boundary layers where it displays the effects of inductance and capacitance most prominently.

To begin with, the outside of Earth’s crust is a boundary layer. Sonic shock waves made the geometry, and electricity made the chemistry. Wind, also motivated by electric currents, made things move – kinetics. Energy came from within the Earth as a release of stored capacitance. That, in a nutshell, explains the face of the Earth. The creation of virtually every mountain, hill and dale on the planet is summarized in those sentences. The devil’s in the details however, so that’s why we are looking at cracks.

Cracks are the remnant of capacitor interfaces in Nature’s circuitry. They are boundary layers between different materials. The boundary layer separates two dielectrics with a double layer of charge – a capacitor. The dielectric difference was due to difference in dielectric property of the material at the time it was laid down by plasma winds. The dielectric properties differed due to the elemental and molecular makeup of the material, and the state it was in at the time. The material’s temperature, density and pressure influenced the material’s dielectric, and shock waves produced sharp discontinuities in pressure, density, temperature, as well as, charge density.

First, let’s dismiss cracks that aren’t part of the electrical circuit we want to examine. Some cracks are from thermal stresses as matter cooled and contracted, or structural as matter shook and settled from seismic forces. These cracks are generally vertically aligned due to gravity. Gravity makes the fracture plane vertical because it’s the path of least resistance, where gravity’s force vector has no influence holding the rock together.

Figure 1. Thermal cracking(?) in massive sediments.

A good example is how hydraulic fracturing is done in oil and gas production. A fluid is pumped into the well bore to the bottom of the hydrocarbon formation and pressurized until the well bore pressure exceeds the overburden pressure. Fluid pressure separates the rock vertically, creating a fissure that extends the contact of the well bore upwards into the hydrocarbon bearing formation. The practice allows access to hydrocarbons otherwise locked away in dead zones far from the well.

That’s just to illustrate that vertical fracturing is predictable, applied science. A cooling, contracting rock will fracture vertically for the same reason that swelling the rock under pressure fractures vertically – Newton’s Laws.

Some cracks are due to lightning. These are certainly electrical, but lightning finds it’s own path. It’s not wave-guided by interfaces other than the surface it contacts, which still leaves much freedom of motion. Therefore, lightning wanders, following conductive paths on the surface it strikes. It may be vertically oriented, vectored by the electric field, but it will generally not display a pure geometry, such as straight lines and polygonal forms. It’s form is chaotic.

Lightning blasted rock often displays shearing, where the blast fractured rock; or melting, burning, or chemical reaction from the heat and charge. A dipolar magnetic signature should be detectable across the current path. But lightning scars are not the type of cracks we want today.

Figure 2. Black, burnt, chipped and chemically altered rock where lightning struck sandstone. Note the lightning streak angle is at odds with the vertical water streaks.

We want to discuss cracks generated by shock waves and electricity at the shear zone between the land and plasma winds, at a time when Earth was embroiled in the epic maelstrom of creation. In other words, we want cracks made where the filthy underbelly of the Ouroboros scraped the land.

The Ouroboros, or the penultimate representation of the concept, anyway, is the plasma wind that wrapped the Earth during key stages of its evolution. Sharp discontinuities in plasma winds caused by supersonic shock waves left imprints in deposits of ionized dust, which manifested as cracks as the dust recombined to form rock. The discontinuity in a shock wave includes density, pressure, charge density and dielectric property, which electrically makes it act like a capacitor. Therefore cracks in rocks are the all important proof of wind formation and the circuitry in the plasma winds.

To define a crack, first of all, means an intrusion, or separation between rock matrices, or the boundary between stratified layers, whether the space between is a void, or filled with material. Therefore, we include rock veins, dykes, shelves, faults, and similar geologic structures along with empty cracks. The difference is whether material was pulled into the crack, or expelled from the crack by electric fields. Either way, the crack was made by shock waves.

That is why there are a lot of diagonal cracks. Also polygonal cracks. There are triangles, rectangles, squares and diamonds everywhere in the rocks, the mountain flanks and the outline of mountain peaks. The mountains are composed of triangles at virtually every scale. These were caused by shock waves.

Figure 3. Diagonal seam in sandstone tetrahedron due to a shock wave
Figure 4. The windward face of a tetrahedron displays the effects of multiple shock wave reflections. San Rafael, Utah.
Figure 5. Frozen in time, off-gassing from a shock wave.
Figure 6. Cross current shock wave interference.

It’s also why they form at particular angles. Mainstream theory assumes rock strata always forms horizontally, and then “uplift” shifts strata into various angles. Uplift is assumed to be caused by the stretching and compression of the crust due to tectonic movements. It is then assumed, erosion from wind, ice, vegetation and rain over millions, or billions of years then polishes the crustal surface into the forms we see today.

The assumptions they make are actually ridiculous. Most rock is very brittle. Limestones and sandstones can break in your hands. Igneous rocks like granite break with a whack of a hammer. If the planet’s crust churned the way they say, under the forces of compression and expansion, lifting and falling, all the while scraping and jostling for billions of years, the mountains would be piles of rubble, not sharply defined tetrahedrons.

Figure 7. Sharply defined tetrahedrons.

Erosion would further break rocks apart, smoothing their edges, rounding their corners and dissolving any geometry they might have had. The mainstream model of tectonics would leave piles of sand and rubble. Yet what we see are sharply defined geometries that accurately and predictably follow the form of sonic shock waves and the separation bubbles they form at the wind-ground interface.

When a shock wave forms, it forms at an angle to the wind’s direction determined by the ratio of the wind’s speed to the speed of sound, called the Mach number. A Mach number of 1 or more means the wind is supersonic. A Mach number of 2 means the wind is twice the speed of sound, and so on. The incident angle the shock wave makes with the ground varies with the Mach number, so it can be used to determine if winds were consistent, forming a consistent angle, or variable in either speed, or direction. If you know the density of the atmosphere, you can determine the velocity of the wind from the Mach Angle.

Figure 8. Shock waves form at angles related to the wind’s Mach number in a standing wave, or the Mach speed of the object in a moving wave.

Shock waves reflect from an interface (like the ground) just like a beam of light reflects from a mirror. The angle of reflection compliments the incident angle. The ground forms a plane shock waves reflect from. Wherever supersonic winds blew, and evidence suggests that was nearly the entire face of the Earth, standing waves formed and reflected from the ground from every channel of jet-stream wind. In fact, shock waves formed whenever a jet-stream wind changed direction, or expanded, or sheared against the earth, or another wind. Therefore, shock waves patterned the winds – the wind rippled with shock waves as they deposited dust and sand – and the deposits retain the patterns.

See The Damn Pattern

Figure 9 compares images of a diagram of a standing shock wave reflecting from a surface (from wind tunnel tests) with an impression of a shock wave reflection in a mountain exposed by a road cut. Every feature of the laboratory produced shock wave is evident in the road cut. The angle between the incident shock wave and the reflected shock wave forms a “Y”. Inside the “Y”, there is a step in the stratigraphy. The “Y” forms a discontinuity where the layers take a step down, as if this wedge sank. They also angle, or dip differently, just as the pressure regimes inside the “Y” of the diagram do. The stratigraphy inside and out of the discontinuity closely matches the “stratigraphy” of pressure regimes in the boundary layer of supersonic winds – because this hill was formed in the boundary layer of a supersonic wind.

Look people, this ain’t no damn coincidence. How could this happen by conventional theory? How could this wedge drop a few feet and neatly fit the “Y” without it’s edges even getting ruffled? The “Y’ isn’t straight, it has a hyperbolic compound curve. How could the wedge sink and still match this curve perfectly, without pinching or leaving gaps, and without disturbing the geometry of the curves, or strata inside, or on either side of the discontinuity? Why does the angle of the wedge strata shift with respect to surroundings on the left discontinuity, and the lower right, but not at the upper right, where the strata remain consistent across the discontinuity? How come, while falling into the crack, the wedge became thicker in the big white band of strata at the top, but only on one side.

None of this makes sense, unless you consider wind deposition at the boundary layer of a standing shock wave reflection. The discontinuities are the impressions left by the incident and reflected shock waves. They form a sharp, geometric boundary with no evidence of friction between. As dust deposited, it met this shock wave and followed the pressure and charge density profile of the shock wave. Dust was sucked down into this hole by pressure differentials across the boundary layer, but layered in proportionate thickness to the step voltages that segregated each pressure regime, and the type of dust being delivered by the plasma wind.

The wind had to pile this dust and gravel pretty fast because the layers filled concurrently. That is, the layers didn’t stack up one after the other. They fire-hosed in, each layer at the same time, segregated by the dielectric property of the dust. Amazing when you think about it, but it was all one flow segregated like a rainbow that suddenly came to a stop and compacted itself into a mountain, freezing in that moment this shock reflection and the effect of it’s sudden pressure anomaly in the air-flow.

Ask anyone to look at this picture and say how the layers deposited, and I guarantee they will respond: “one on top of the other, sequentially over time, with the lowest being the oldest.” Whod’a thunk it all blew in together one one big rainbow of horizontal winds, and then stuck due to static electricity? It’s not easy to wrap your head around because we have been taught not to think outside “The Box”.

One thing you’ll notice: the reflected shock in the diagram is concave with respect to the incident shock, whereas the road cut shows a convex relationship. Take note, this is a particular feature of shock waves. The concave/convex relationship is a function of how the wind is vectored with respect to the ground interface – whether it’s parallel to the ground, lifting from the ground, or driving into it. The diagram depicts a wind moving left to right parallel to the floor of the wind tunnel. The road cut is in a hill the wind was impinging on as it built, and lifting over, changing the Mach angle with respect to level ground, and the reflection geometry from concave to convex.

This also explains why the white band gets thicker on the right of the road cut, but the diagram shows the “edge of the boundary layer” (also marked BL in the diagram) turns down and narrows this top band in the “Y”. The road cut white band widens because it intersects a convex shock wave reflection, whereas in the diagram this top band narrows because it intersects a concave wave. It is a trivial matter to change the concave/convex relationship by simply changing the incident angle of impinging winds. There is also a lambda foot structure at the very bottom tip of the “Y” in both cases. These little details are proof of shock wave formation.

See the damn pattern. These images are scientific proof – a direct link between repeatable empirical tests and nature. This is far more evidence than anything geologists have presented for any of their “tectonic” theories. Any. Ever. Their theories are built on the big ideas of arrogant, goateed, bow-tied phonies without a shred of empirical evidence. Their “evidence” it’s conveniently shrouded in the depths of time – millions and billions of years of imperceptible, sand grain-by-sand grain movement which they are still working to explain how CO2 made happen. Who are we to question them? Actually there is no need to question them – just stop listening to them, and for Christ’s sake, stop giving them money.

Bubbles in the Wind

The shock feature exhibited in the road cut is only a small part in the full picture of a supersonic wind-generated shock wave. It’s best to think of shock waves as the membrane of a bubble. On one side of the membrane is a gas of higher pressure than on the other. The entire bubble structure is very complex, however, with regions of expansion and compression, recirculation, laminar flow and turbulence in a supersonic wind that is passing through the bubble. In a dusty plasma it gets even more complex, with electric fields, sheets of current and step voltages across the membranes, which is no longer the physics of fluid dynamics, but of magneto-hydrodynamics.

The following image shows where I think the road cut feature came from. This part of the shock wave structure dips into the separation bubble, which is the turbulent region at the base of the bubble. The separation bubble is where dust collects, which ultimately buried the tip of the shock wave. This shock wave is not the primary incident wave, but a harmonic reflection of it that does not always form, depending on conditions.

Figure 10. Circled is region of the shock wave that made the feature in the road cut.

Note the fine vertical lines to the right of the primary shock wave in the image. These are step-wise gradations of pressure in the airflow throughout the shock wave structure. In a plasma these gradations are also steps in potential. These vertical gradations can be seen in rocks, criss-crossing the diagonal shock waves produced by the Mach angle.

Sometimes dust can fill the entire “lambda foot structure” where the incident and reflected shock meet at a triple point. In which case you get mountains like this.

To be clear, some mountains are formed inside the separation bubble, or “separated flow zone” in the image, and some mountains fill the entire “Lambda shock structure”. The Lambda foot manifests at the base of every shock reflection, so it is a repeating fractal element of the shock wave and appears at different scales. The stratigraphy in the separation bubble “dips” (meaning angled with respect to horizontal) consistent with the wind’s vector inside the shock bubble, because that is how the wind layers its dust load. Mountains that fill the entire Lambda structure may have stratigraphy that dips at a shallower angle than the dip of Mach angle displayed by its flat triangular face, because the wind was vectored upward and dust fell, filling the lambda foot from the bottom.

Although this should not be taken as a hard and fast rule, because there are always variables; generally speaking of wind generated mountains, it can be said that is why shallow dipping hills, foothills and mountains have layered stratigraphy that dips with the contour of the mountain, while large triangular peaks are more like layered bricks – not necessarily horizontal, but a relatively shallow angle at odds with it’s outline.

Mt. Everest is a good example of a big lambda foot mountain. In fact, at 29,029 feet, I’m pretty confident it’s the biggest, baddest lambda foot ever. Follow it’s stratigraphy, such as its famous “yellow band” and you can see the dip in relation to the facets of it’s outline.

Figure 12. Mount Everest, made by wind moving left-to-right, and up in this image.

That’s how mountains are formed. The evidence is everywhere, and looking at cracks yields, well, mountains of information about their genesis. The interface between stratigraphic layers are cracks by my definition, in case you think I’m loosing the thread; talking about the shape of mountains instead of cracks. Cracks are the remnant signature of shock waves and electric currents produced in the storm that built the mountain, just as the outline of a mountain is. The contour of the mountain, the cracks in it and the dip of it’s sediments are all related to shock waves. The angles in their layers and contours is pure information about their creation, because information is always a waveform, and the mountains store the waveform.

Electricity in a shock wave is especially shocking

The shock wave, and shock wave reflections, form an electric field across the walls of the wave in the manner of a capacitor. A double layer forms on the interfaces with a dielectric field between. The charged layers can be the same or opposite polarity to the charge of the dust being deposited, leaving ether a void, or hardened rock. A hardened seam will have more conductive material, like the quartz in rock veins, than the surrounding country rock-matrix.

Mineral bearing veins, for instance, bear conductive minerals like gold, silver and copper because these conductive materials were attracted by the electric field of the shock wave either as a vapor from the atmosphere, or by diffusion through the ground (or by transmutation, but that is over my head. I don’t have my alchemy license yet.). Diffusion through the ground is how consensus theory works, with the attractor being hydrothermal venting. Why hydrothermal venting should attract metals from far and wide isn’t clear. An electric field does that though, without question, so our theory is already better if Occam’s razor means anything.

The quartz veins in the images of granite were created by an emergent effect of shock waves, called traveling waves. Note there are four wide quartz veins (see large image) in two pairs that parallel each other diagonally across this granite face. Traveling waves are semi-stable reflected waves that migrate through a shock wave structure due to instabilities in the bubble. The even vertical lines that appear in Figure 10 are examples in a steady wind. But shock wave bubbles can wobble just like soap bubbles, producing instabilities as wind speed and direction varies. They move in harmony to the shock wave frequency in repeating patterns. That is why there is a pair-of-a-pair of similarly structured, yet highly complex repeating forms in these rock veins.

The next image shows clastic dikes in Washington State. These dikes are vertical-to-diagonal intrusions in a sedimentary hill exposed by road cut. Each dike is layered, vertically, with different fineness of sediment graded from silt to gravel, in each separate layer. The sediments inside the dikes are completely different material than the hill they intrude in. It’s as if each vertical layer of the dike sucked a different dust down into it from somewhere other than the mountain it’s in.

And that is exactly right. Each layer in this dike was a separate funnel of air pulling dust down from different regions of the shock wave bubble, where different grades and types of rock were flowing in segregated jet stream winds. The “funnels” were traveling waves that deposited these dikes in little, downward pointing pressure regime spikes, while the separation bubble filled around them.

It’s hard to think on this scale. The cracks, dikes and veins just shown were produced in the very bottom of a shock wave structure like the one shown in this image. They formed in the turbulent back-end of the separation bubble, a result of friction where the wind literally scraped the ground. Mountains like Everest, the Matterhorn and thousands of lesser peaks were formed by dust filling the entire lambda foot structure, forged by winds and electric potentials that are nearly incomprehensible.

Supersonic winds had to wrap the entire planet. Earth looked like Jupiter, only a lot worse. The fastest winds rolled up and down, and swept against the ground because they were driven by electric currents coupled to the Earth’s. Higher winds moved slower, circulating positive charge in a halo over the concomitant destruction and creation below. Hence the Ouroboros. It did circle the Earth, winding and coiling like a serpent eating it’s tail.

It’s all circuitry. Every feature points to the actions upstream in the current path. That is why the true creation story is knowable. The patterns remain that tell the story. Frequencies, harmonies, wavelengths and wave-guides. Shock waves are wave-guides. Everything is electric. Everyone needs to know this, the sooner the better.

Thank you.

How To Control The Weather

Can it be done? Lot’s of people say no. They say Nature is too vast for us feeble humans to influence, too complex to ever understand. This is hogwash, of course. All it takes is energy. Enough energy introduced in the right way will change the climate.

CO2 doesn’t do that, by the way. CO2 theoretically captures a minor fraction more energy from the Sun than Earth would otherwise reflect, but it doesn’t amount to a hill of beans. Let’s talk about what really drives weather, and how to manipulate it. In order to do that, we have to look at the planet for what it fundamentally is.

The “planet” is more than the blue marble we stand on. Earth is an electromagnetic bubble with a blue marble held inside. At the very edge of our bubble is another tiny little bubble called the Moon.

Fundamentally, Earth is an electric circuit that matter is bound to in a geometry of spherical layers. The outermost layers are the electromagnetic fields that extend far into space surrounding the planet. The innermost layer is at the core. Earth’s crust is one layer in the stack.

Electrically, that makes Earth a spherical capacitor that stores energy, primarily in it’s crustal shell and atmosphere. It absorbs radiant energy from the sun, and emf that enters at the poles by induction along geomagnetic field lines. Consensus science only recognizes the radiant energy. They pretend the auroras aren’t a consequence of significant polar energy flow into the planet, however obvious that may be.

The consensus measures “cosmic rays” at the poles, but that is only part of the physics. There is magnetic induction within Earth’s layers generated by the polar currents. These aren’t being measured, or even recognized by consensus science. It’s these currents that are the primary drivers of weather in the atmosphere of the blue marble.

They are much more than that, of course. The fact of Earth’s crustal currents has been recognized since prehistory. For instance, crustal current patterns relate to “Ley lines”, also considered by some to be the geometry of Earth’s ‘subtle electromagnetic energies’. They ain’t that subtle, and the relation to Earth’s subsurface electric currents is profound, but we can’t boil the whole ocean in one article, so let’s stick to controlling weather. I want to be as quick and blunt as a solar flare, because something tells me this might be pertinent right now.

The planet’s circuit configuration is that of a plasmoid. A plasmoid’s geometry is a hyperboloid wrapped by a toroid. From the standpoint of thermodynamics, it is a standing wave of energy. When energy stands still, it becomes dielectric; that is, matter with mass.

Solar and cosmic energy feed the system (Energy In), while high energy discharge from thunderstorms dissipates it (Energy Out) and the crustal layers of the planet are the buffer (Energy Stored). Electrically, the planet acts as an electret, with an internal electric field and circuitry wrapped in it’s own magnetic cocoon, floating in the electric field of the Sun. The Solar field feeds and sustains the Earth’s internal field. A plasmoid’s internal field dies without an external electric field to sustain it.

Plasmoid geometry

The outer shells seen in the figure above relate to Earth’s geomagnetic field and Van Allen belts. The blue marble is buried in the core of this entity, formed of layers of matter crunched into a sphere with electric currents coursing through it. It’s like a drop of condensate in a whirling, electric ‘vapor’ cloud.

The surface of the Earth, as on other planets is the neutral boundary layer. It’s almost the only place in the Universe where matter is considered “normal” – gas, water, or solid. Everywhere else there is plasma, the so-called fourth state of matter. If science were truly scientific, plasma should be called the first state of matter, and neutral matter a “special condition”.

The atmosphere around Earth also divides into layers – the tropical air layer, the high thin stratosphere and the ionosphere. There is a step voltage and change in plasma strength at each layer interface. There is also thermodynamic change. There is mechanical shearing at the boundaries, changes in momentum, temperature and pressure. All of these macro effects are due to electrical effects at the atomic level.

Earth’s atmosphere is composed of dielectric layers.

This creates a local electric field within each layer, which accumulates additive to an overall electric field across the atmosphere. Electrically speaking, this layering is called spherical capacitance. The degree of ionization, or “strength” of the plasma, increases with altitude until it accumulates to a fully charged sheath. And then there is space.

The same thing – layering, charge separation, step voltage, electric fields, changes in state – occur inside the Earth. The layers of hard crust, spongy athenosphere, outer core and inner core (assuming the conventional model) are the layers of the blue marble. The actions of capacitance and induced currents differ inside Earth in that they involve solid state circuitry in a complex, non-homogeneous matrix, but they still obey basic circuit behaviors.

But the structure of the bubble isn’t finished with the blue marble and it’s atmosphere. It is self contained in currents of magnetic induction along the geomagnetic field that loops far into “Space” (Space with a capital “S” is where astronauts hang), making this also part of Earth’s “space” (small “s”, meaning it’s volume).

The planetary circuit defines the true “volume” of the planet.

When the planetary bubble is exposed to a change in it’s environment, meaning the Solar environment, it has a feedback response. If the potential between the Solar environment and the planetary bubble increases, as in Solar Maximums, more energy is forced into the bubble by induction and it stores some of this energy in it’s capacitor shells.

If the potential decreases, as in a Solar Minimum, the bubble releases stored energy from it’s capacitor shells. Whether it is releasing energy, or storing energy, the change in state of the planet’s energy system induces current flow in the crust and atmosphere. Hence, it causes bad weather, volcanoes and earthquakes.

What stimulates the actions of severe weather, volcanism and earthquakes are the crustal currents – electric currents that flow within Earth’s crust. There are other currents in the system – the currents at the poles, currents inside the crust and currents outside the crust extending into space. But it is the crustal currents that directly affect the weather. Therefore, control of the weather can be achieved by influencing crustal currents.

Crustal currents flow where the plate boundaries are. They form rows of volcanoes, coastal boundaries and fault lines in Earth’s crust. In other words, they are easy to find if you just look. They are the result of induction from polar, Berkeland currents and charge accumulation at the continental plate-fringing fields due to capacitance.

It’s the fringing effect at the edge of a capacitor plate that accumulates charge, and the Earth’s magnetic field that moves it, generating currents. A change in the system state caused by a change in input energy from the Sun generates a change in the charge accumulated by the capacitor plates, and therefore a change in the crustal currents. To artificially affect the weather, all one needs to do is introduce some extra energy into the system where it amps-up the crustal currents.

It wouldn’t take much energy, either. Just the right amount of energy, probably in the microwave frequency, so it is easily absorbed by water that saturates the crust. It just needs to be delivered at the right frequency and amplitude to resonate with the circuit’s natural frequency and amplify the signal. Volcanoes, earthquakes and severe weather should result.

Here’s why. Capacitance couples the action of the crustal currents to the atmosphere. If a crustal current amps-up, storms will brew overhead, or at some node on the system where charge accumulates. It is just capacitance and induction. A moving charge (current) in the ground will induce a current in the atmosphere. A charge accumulation in the ground will be mirrored by a charge accumulation on the opposite plate – the atmosphere – by capacitance.

The consensus will claim there is no such coupling, but that is physically impossible because there is a known electric field at all times between Earth and sky, and a continuous drift current. So it physically has to respond to the laws of induction and capacitance. The consensus is either lying, or stupid.

It’s the same thing that a solar flare does to Earth’s atmosphere because it amps-up the ground currents. If some diabolical scientists wanted to effect severe weather, they would wait for a natural solar storm to activate the crustal currents, and then push those currents at resonant frequency to amplify them. Nicolai Tesla figured this out many years ago.

The goal is to introduce a signal-to-noise ratio greater than 1, which forces runaway feedback. It is the same thing as when you place a microphone near a speaker and feedback squeal drowns out the intended signal. By waiting for a solar storm to introduce a major spike in the noise, all the diabolical one needs to do is add a little push to the solar impulse to get the system out of balance and generate exceptional weather conditions.

I would guess a few thousand, or perhaps only hundreds of MW generated by secret nuclear plants, pulsed into the ground at strategic locations at the right frequency, would produce severe tropical weather in parts of the world, and heat waves and drought in others. Nuclear submarines might be used for this. Volcanoes would spew along the affected circuits accompanied by earthquakes, fires and probably an increase in UFO sightings because of strange lights in the sky.

As we dip into the Solar Minimum, the Earth is experiencing amped-up ground currents. There has been a dramatic increase in volcanic eruption, drought, severe weather, earthquake and fire in the last couple of years as a result. But could it be getting a little help from DARPA, or some other malevolence? It’s not like the Deep State has an agenda, is it? They wouldn’t screw with the weather without telling us … would they?

The Shocking Truth

Sonic boom

Ears ring, windows rattle, the dog hides under the bed. You’ve heard it before. Thunder from an arc of electric discharge, or from a passing, supersonic jet.

One doesn’t hear jets much anymore, but in the good old days I used to, when F-100 afterburners lit over the desert. Booms from twenty miles away.

When you rub feet on the carpet and touch a doorknob, you get a spark and hear a snap. That’s the same thing on a tiny scale. Think about the power it takes to make a boom that travels miles with the energy to rattle windows.

If you’re really close, in the mountains on some high, windswept ridge, lightning is terrifying. Lightning’s shock wave will blow trees and rocks apart like dynamite. On rocky peaks, especially granite boulders, you can find the scars. If you know what you’re looking for they’re easy to spot, but if not, a magnetometer betrays their signature. Where I live, I find rocks the size of buildings split apart, chunks the size of houses tossed away. It’s quite obvious past lightning was more powerful than we see today.

Figure 1. Twelve ft. tall boulder neatly quartered by lightning. White streaks on right hand rocks mark the arc’s path.

It’s the explosive blast – the Arc Blast – a sonic wave that blasts outward in all directions at the speed of sound like a wall of heavy air. It doesn’t move the air with it, but rolls through it just the way an ocean swell rolls through water. It compresses and decompresses the air it moves through, instantly raising it’s temperature and pressure, then dropping it in the next instant.

There is another effect in the shock wave, called ionization. It’s the inevitable result of higher temperature and pressure, because, to put it in conventional terms, it means more atoms colliding, knocking electrons free.

Figure 2. F-18 screams at Mach 1+ speed.

It’s really more than that, though. A shock wave generates current. The condensate in a cloud is an electric conductor. The dipolar molecule of water aligns with electric fields. Dipoles attract and drops form. Charge moves when this happens, meaning current. Current in a cloud is called “bound” current.

If you don’t believe me, question this: why do governments use electricity to modify weather? And how could they unless there is something in the cloud to carry current?

Fox 13 Tampa Bay

In other words, a shock wave is a plasma. It may be a weak plasma, like the sonic wave produced by a fighter jet that condenses water vapor, or it may be a sheet of electric current that spits lightning of its own, like the shock wave of a hydrogen bomb.

Figure 3. Nuclear Shock Wave.

If you are fortunate enough to see a rocket launch, or re-entry you may witness shock waves that are sufficiently ionized to glow in the upper atmosphere. For perspective, realize there are no shining ions traveling with the shock wave bubble. The bubble is moving through the air, ionizing and exciting atoms as it goes, generating a current in the shock wave. Shock waves are electric. The sight of glowing shock waves in the black of space is surreal. It gives you an idea of what the ancients saw in the sky.

Figure 4. Glowing shock wave from something entering the atmosphere.

Meteors also generate shock waves. The Chelyabinsk event produced a shock wave that injured many people. The Tunguska blast reportedly knocked people off their feet several miles away.

Figure 5. Tunguska shock wave effects at the blast zone.

Now imagine a world in chaos, where winds shrieked at supersonic speeds. One need not ascribe to Velikovsky to imagine such a thing, because every mainstream theory of impact and accretion, or whatever is in favor today, would necessitate periods of chaotic atmosphere. Supersonic winds would have happened at times regardless of what science-based creation theory you ascribe to. Any big meteor impact would do it. Even the creationist’s seven days must have entailed some wind.

Besides that, we have planets in our Solar System with supersonic winds right now: Jupiter is one. To assume supersonic winds and shock waves occurred, and should therefore have left their mark on Earth, is perfectly sound logic in any cosmology.

Yet you don’t hear shock waves mentioned much by geologists. They make theories and wave their hands about tectonic forces without finding what does the pushing, but they don’t say much about sonic shock waves. They use sonic waves as a tool, and they recognize micro fractures in quartz, and shock cones in rocks due to meteor impacts, but virtually nothing about the winds that would result, or the effect of sonic shock waves.

Previous articles have shown that shock waves produced by supersonic winds left tetrahedral shaped mountains with flat, triangular-faced mountain flanks. The evidence shows that Earth was embroiled, at times, in a maelstrom of winds that actually shaped the surface of the planet. The primary mechanism for the triangles you see so ubiquitously is a region of the shock wave called the Separation Bubble.

Figure 7. Pusch Ridge in the Catalina Mountains, Arizona – leeward side of a near perfect tetrahedron.

When a supersonic wind shears across a surface and meets an obstruction, it lifts to ride over the obstruction like a wing, because a high pressure zone forms in front of the obstruction. This high pressure zone is called the separation bubble, because it separates the supersonic flow from the ground, forcing it to change direction. Wind flow in the following diagrams is left to right, unless noted otherwise.

Figure 8. Shock wave, reflected shock wave and separation bubble.

It’s called a bubble because, in ideal conditions it forms an actual tetrahedron shaped bubble of high pressure, low velocity air surrounded by low pressure, high velocity air. The bubble walls, or “membrane” is made of shearing and reflected shock waves. They are a predictable, inevitable, measurable boundary layer effect caused by the drag of supersonic wind over a surface.

If you read my past articles on the subject, you’ll note I called the separation bubble a low pressure, low velocity zone. That was a mistake. So this is meant to correct the record and give some more detail on them, because they are the most tangible, accessible, reproducible and compelling evidence for Velikovsky’s theories in existence.

I don’t say that lightly, but it’s absolutely true. Shock wave tetrahedrons are more abundant than rock art that can be compared to plasma instabilities. Comparisons of petroglyphs to simulated instabilities are simply shrugged off as pareidolia, anyway. They also don’t depend on interpretation of tiny points of light from a zillion miles away, or guessing about the nuclear processes inside stars, or atoms. They don’t depend on reinterpreting mythology, equations, or the validity of anyone’s physics. Shock waves are well known by classical physics and applied science. Shock wave tetrahedrons cover our planet.

In fact, some aspects of plasma instabilities and astronomical “Z-pinch” nebula are due to shock waves. Some petroglyph’s depict atmospheric shock waves, too. Sonic shock is essential science in the Electric Universe, and I’m confident Hannes Alfven would agree. In a plasma, shock waves and currents are coherent.

Shock waves generated during past cosmic upheaval on Earth interacted with solid ground and whatever matter they touched. They echoed from solid surfaces and shear zones. They vibrated and wobbled and crawled across the earth making piles of debris we call mountains. They interacted in patterns of constructive and destructive interference and resonated in harmonic frequencies. They left those patterns in the mountains for us to see. Shock waves are, after all, plasma sound waves. They are tangible, falsifiable and accessible. They can be reproduced.

I’ve been noodling how to make a solid tetrahedron in a wind tunnel. The problem is getting adherence. If dry powders, or sands are used, they won’t stick. If wet anything is used it will make a mess. Nature doesn’t care about messes, and splatters stuff everywhere. But a wind tunnel is an expensive piece of equipment that doesn’t stand well to supersonic sandblasting.

A magnetic dust and magnet won’t work to adhere a tetrahedron, because the dust would take the shape of the magnet. I can’t get an ionized supersonic wind generator without a Chinese Electric Turbine, and so far the Chinese aren’t answering my calls. Neither is NASA. Funny, it’s the same phone number.

I think, maybe a big drop of glue, or epoxy could be used as the obstruction in a wind tunnel if it were performed while tacky. It should mold to the shock wave separation bubble without flying away. Anyway, it’s not an easy problem.

But wait, Nature provides proof. We don’t need a wind tunnel, the atmosphere itself is our laboratory. Iron meteors enter Earth’s atmosphere at supersonic speeds. Friction with the atmosphere melts and ablates the iron. Ablation patterns provide the proof of shock-wave tetrahedrons.

Proof is in the Pudding

Figure 10, and several to follow, have molded iron shock tetrahedrons at the tips of flow patterns made by separation bubbles. This is tangible proof, made in conditions similar to theory. This piece of data is a start to prove science as we know it is mostly wrong. Well, okay, hugely wrong. Massively wrong. These meteorites should be prima facie evidence of Electric Earth Theory.

Figure 10. Ablated face of an Iron Meteorite.

This is a meteor of iron with an ablated face caused by it’s supersonic entry into the atmosphere. Heat, pressure and supersonic shock waves molded this face. The supersonic wind, impacting the meteor head-on, segregated into bubble-like pressure regimes. Low pressure zones where wind velocity was greatest created scoops and divots. High pressure zones segregated these air flows, leaving sharp dividing ridges, and triangular separation bubbles where the air-flow separated from the meteor.

Figure 11. Separation bubble-formed tetrahedrons.

The smooth divots are impressions of flow streams, and the triangles appear at their tips. The change in direction as air-flow separated from the object created separation bubbles, which molded the fluid iron. Molten iron was pushed from the divot like pudding, and held in the high pressure separation bubble, molding it to the form of the bubble. Look closely and you will find where some tips broke-off.

Figure 12. Supersonic flow patterns in bubbles.

The entire divot is, in effect, the separation bubble. It is literally bubbles, formed with skin effect from shock waves that hold tension like a bubble’s film. It creates “Y” shaped structures around a “triple point” where shock waves and bubbles meet, sometimes called the “Lambda Structure”.

In the case of mountain building, winds laden with dust passed into the bubble, and were heated, compressed and slowed to a stop passing through the shock wave. The ground was statically charged and adhered the dust, mud, sand, stuff falling from outer space, or whatever the wind carried. Hence the dust piled in the shape of the bubble – a tetrahedron.

Take a look at the similarity in these tetrahedrons formed by a hot blast of air in South America to the ones along the edge of the meteorite.

Figure 14. A spray of tetrahedrons from a down-burst wind.

Really, it can’t be more obvious. In Figure 14, it’s visually apparent how a non-rotating, down-burst wind layered the dust in a consistent pattern of tetrahedrons formed by separation bubbles where the wind impacted and deflected from the land. This was made by a blow-torch aimed at the ground – the hot exhaust of a meso-cyclone that churned in a plasma storm of Jovian proportions.

The side of the tetrahedron facing the wind will be a perfect isosceles triangle if the wind strikes normal to the object. If the wind hits obliquely, is interfered with by adjacent shock waves, is sub-sonic, or transient in it’s velocity, or if the dust load deposited doesn’t fill the entire separation bubble, it will deform the tetrahedron.

Figure 15. Isosceles triangles splay out from ablated face of a meteor.
Figure 16. Near perfect isosceles triangles in center mountain, flanked either side by irregular groupings of triangles bunched together, like musical notes.

You are not suffering from pareidolia. A triangle is a triangle, and that is what you are seeing. We could be scientific and take measurements to prove these are triangles, but I think we can use common sense. Here are more examples of tetrahedrons formed on iron meteorites.

The size of the separation bubble depends on the size of the object, because that determines the area of wind moving past the object and therefore the size of the shock wave. So, the bigger the meteor, the bigger the tetrahedrons.

The constituency of the rock also effects the roughness of the surface, whether it is chunky, or smooth, as they say. Regardless of many variables, the triangular face of separation bubbles are distinct and appear exactly where they should if one traces the wind patterns. Jeez, somebody out there must have noticed this before. I’ll bet there is some obscure, mustachioed PhD at the Upper-Siberian Institute of Aerodynamic Widgets who knows all about this. Please call me.

In a completely different circumstance, lightning generated shock waves also produce tetrahedrons. The next four figures are photos of an iron bearing rock that has been struck by lightning, partly melted and vitrified, with raised triangular layers where fluid metal was trapped by separation bubbles.

The lightning left a yellowed, chemically altered trail where it surface-conducted to a shoe-shaped pool where the rock melted. The arc likely met some discontinuity, or crack in the rock where it burrowed in, creating a hot spot. Cutting beneath the skin of the rock created an arc-flash that trapped triangular sheets of molten rock in the separation bubbles, pointed outward from the center of the blast, shown in the following images.

The final image shows a track of very small triangles marching out of the molten puddle. The amplitude of the triangle is related to the cross section of wind that created it. What this little trail of arrowheads means is that a very narrow supersonic jet stream blasted this channel in the rock, and you can see exactly the path it took.

Can you find any other tetrahedrons surrounding the track outlined? They are aimed perpendicular to the narrow track and larger amplitude. I counted six good sized ones, but there are a bunch of small ones, too. The arc channeled a narrow, focused jet, while at the same time, shock waves blasted outward in a diffuse wave that produced larger amplitudes. There is also a second lightning track from the bottom right corner. There are shock patterns that correlate with the blast from each lightning track.

For global scale winds, separation bubbles became quite large. Figure 17 gives you some idea of scale. The separation bubble that creates a mountain is just the very foot of a shock wave structure much more complex than a simple tetrahedron. There are flow paths in, around and behind the separation bubble that all leave their mark on the ground.

Figure 17. Separation bubble and back flow eddy structures.

If the wind keeps blowing dust at supersonic speed, the tetrahedron formed in the separation bubble blocks the air, forming a new obstruction to the wind, and a new separation bubble forms in front of it, trapping more dust that layers in the triangular shape of its windward face. This blankets the tetrahedron face with layer after layer of deposit with each pulse of the wind. Each pulse of the wind may carry different constituents of dust and charge, so each layer deposited has it’s own characteristic chemistry.

Figure 18. Separation bubbles layer sediments of differing chemistry on top of each other.
Figure 19.

It is exactly the same way wind makes sand dunes, except supersonic shock waves are rigid and straight and make sharp angles instead of soft curves. Sand dunes are formed in the high pressure, low speed zones beneath an undulating wind, and the troughs are low pressure, high speed zones. The high speed winds carry the sand to the low speed zones. That is why they appear in waves. Static electricity plays a role in sand dunes, too, lofting and adhering the sand, and so it does with shock waves.

Figure 20. Leeward side of a sand dune forms, in principle, just like the leeward side of a supersonic tetrahedron.

Each layer’s chemistry reacted with adjacent layers. The matter laid down still swam with free charge. Migrations and recombination focused at the layer interfaces, still hissing and vibrating with shock wave echoes, where dissimilar matter made reactions, drawing ions from surroundings. Charge built an electric field across these interfaces, in the way a capacitor makes an electric field. Seams became hardened and mineralized, and sometimes evacuated by gases evolved from reactions that channeled caverns as they expanded.

Seam in sandstone produced by shock wave and off-gassing, San Rafael, Utah

The electric field, transverse to the seam, is why most quartz veins grow transverse across rock seams. They are the electrical expressions left by shock waves and electric fields. The consensus theory of hydrolyzed silica migrating into rock seams by hydrothermal action isn’t entirely wrong, but it misses the role of electricity and how it would accelerate the pace of crystal formation. It also misses the role electricity plays in the migration of conductive metals into quartz veins and a number of other things.

Shock waves took different polarities. They generated lightning. They connected ground to cloud in a sheet of plasma current. They ionized air, water vapor and dust. They melted metals. They vibrated and electrified the ground. They segregated airborne matter by electrostatic filtration. They compressed matter in geometric shapes and charged it with current to fuse it together. They formed plasma networks of active circuitry. They patterned the wind in diamonds that glowed, with sparks shooting through. They turned biological beings to jelly.

Shock waves are a pathway for discharge, a current generator and a capacitor across the walls of shock “membranes”. They are a big piece of Earth’s circuitry and a principle action of Nature. They are the most obvious, prolific and easily defined proof that Earth was formed, and still performs as an electrical body.

And one of the most beautiful. After all, they produced these:

We’ve been looking at the triangular face of the tetrahedron. The focus will turn to the rear end, and the crack between bubbles, in the next article (tentatively titled Butte Crack).

Special thanks to Stefan Ahmala, who took the photos of the rocks in Finland. Stefan discovered Thunderbolts recently, and like most of us, arrived here because he knew the rest of the world is crazy. Stefan is very enthusiastic, and immediately recognized these rocks for what they are and contacted us. Wouldn’t you know I was writing an article on tetrahedrons when his photos arrived. Well, that is how things resonate in the Electric Universe, isn’t it? We are all of the same aether. It is what is. We can either resonate in harmony, or make destructive interference. That’s our free will.

Stefan Ahmala

Cheers,

Laramie Mountains – Part 2

In my last presentation, Easter egg hunt in the Laramie Mountains, we covered the near perfect cross of canyons made by two out-of-phase circuits coming together. In Part 2, we’ll look at the wind cut valleys around the cross that resulted from induced winds.

Many readers will recall Michael Steinbacher. He theorized landscapes formed by electric winds that prevented deposition of dust raining from the sky. He even performed experiments that demonstrated electric winds doing it. What I’m showing you is exactly what he was talking about.

Wind cut channels are sometimes narrow, straight and deep like the capacitive winds in figure 11, and sometimes they snake, divide and join following induction currents, cutting broad valleys with funnel shaped inflows, as shown in Figures 12 through 14. The (a) image is annotated with wind patterns and the (b) image is without markings for comparison.

Winds in the NE quadrant flowed parallel to the SE quadrant winds, and both cut perpendicular to magnetic field lines, but the NE winds shoot inside the loop of magnetic field lines to the apex, whereas the SE winds cut across the loop sideways.

In the NW quadrant, winds followed magnetic field lines, making a sharp bend at the crux of the “X” and staying inside the quadrant, but lifting as they made the turn.

The SW quadrant has a split personality. In one half winds flow straight at the crux of the “X” in direct opposition to wind from the NE quadrant. These winds met in a central updraft that lifted them vertical. In the other half of the quadrant, winds circulate, making an “S” shaped pattern that begins parallel to, and then crosses magnetic field lines perpendicularly.

Figure 12a
Figure 12b.

The reason for winds to flow either parallel to, or perpendicular to magnetic field lines is induction. Both moving magnetic fields and electric fields induce current. Reactive current is called capacitive when it follows electric fields. It is called inductive when it follows magnetic fields. Magnetic fields are perpendicular to electric fields in certain conditions. Since these mountains formed from circuits 180 degrees out-of-phase, things tend to line-up.

The Laramie circuit produced induction currents following both electric and magnetic fields. Winds in the NE quadrant were due to capacitive reactance, following the electric field. The NW quadrant winds were due to inductive reactance, aligned with magnetic field lines. The SW and SE quadrant winds were combinations of capacitive and inductive currents, but expressed in different geometries.

Reactive currents express either inductive, or capacitive behavior, or a mix in different parts of the circuit. Therefore it’s not surprising the southern quadrants have blended currents. What is surprising is how clear the pattern is etched, in spite of all the chaos and violence of this event. On display are electromagnetic forces that stirred the earth, like we would stir iron filings with a magnet.

Further away from the discharge, the southern quadrants mixed into a large tornado with two satellite whirlwinds that lifted wind in this quadrant into the mesocyclone storm (Figure 15). This tornado region sits just south of the “X” which marks the center of the mesocyclone’s central updraft. This position corresponds well with the formation of “wall clouds” that spawn tornadoes in typical thunderstorms.

Figure 15. Both southern quadrants display tornado footprints (violet) and shock waves (green). Blue are ground winds.

Shock waves reverberated absolutely everywhere, creating nearly vertical oriented tetrahedrons layered like fish scales. Shock waves from winds sucking into the maelstrom left triangular wave-forms where separation bubbles formed beneath screaming jet-streams. They display direction of winds that confirms the wind paths described.

Where wind exceeds supersonic speed and is forced to change direction, shock waves form. They are like folds in the fabric of the wind, which is stiffened into laminar jet streams segregated by extreme pressure differentials.

Tornadoes draw ground winds from all directions, but in a supersonic tornado, there is an inlet zone where the majority of wind enters the rotation. They are drawn from ambient jet stream winds that the tornado forms tangent to. Figure 16 shows winds entering the whirlwind change direction from linear to rotation, forming a large shock wave tangent to the rotation, and parallel to the jet stream (note 1). This inflow shock wave is a distinct feature of tornado “footprints” if the winds involved were supersonic.

If the winds also rotated at supersonic speed, additional shock waves form tangent to the rotation at points of shear between the rotating winds and ambient winds (note 2).

Finally, tornadoes may form shock waves due to shearing interior to the rotation where they curl inside the inlet zone (note 3).

Figure 16. Supersonic Tornado Shock Waves

The largest tornado in Figure 15 lies in the SE quadrant and produced Laramie Peak. It’s the highest point in the range at 10,260 ft, and sits next to a gouged-out valley that dips to 6,700 ft elevation. Both the valley and the peak are within the tornado’s rotation. Tornadoes form a cambered debris “bowl” where the winds scrape the ground. The debris is lifted away where the force of inlet winds carve at the land, and then are deposited on the opposite side of the rotation as the winds lift (Figure 17). Mt. Laramie is one such deposit.

Figure 17. Tornado mountain building.

Shock waves are evident where supersonic winds change direction. Examples in Figure 18a are tetrahedrons formed in the NE quadrant, where winds following the electric field lifted to create separation bubbles. They form tetrahedrons in linear rows conventionally known as monoclines, but they are, in fact, supersonic “sand dunes”. This is especially evident if you examine the breaks and inflections caused by constructive and destructive interference patterns.

Figure 18a shows tetrahedrons formed by jet stream winds rising to the mesocyclone in Area 1. A new set of tetrahedral dunes formed in Area 2, which deflected winds and starved Area 3, leaving a triangular interference zone that pinched out formation of tetrahedrons from the shock wave of Area 1. The gap between Areas 1 and 2 turned the wind and formed a tornado (Area 4) in it’s eddy.

Figure 18b shows these same features from another angle and how eddy currents form behind tetrahedrons in a low pressure zone beneath the rising winds. These are, in effect, destructive interference troughs behind the constructive peak of the wave pattern as winds undulated across the ground.

Figure 18a. Shock waves are green; wind direction, blue; destructive interference, orange; and tornado, violet.
Figure 18b. Shock waves green; wind direction, blue; wind eddies and tornado in violet.

Stepping back to look at the entire heart-shaped circuit domain in Figure 19; blue lines trace the ground level jet stream winds, violet swirls indicate where tornadoes made definitive features on the ground, red “x”s are discharge patterns, and the green areas are where the thunderstorms down-drafted to the rear and rear flank of the storm (also Figure 20). The two lakes are where the circuits connected to ground deep in the Earth, leaving a distinct “V” shaped land form between them forming the base of the “heart”.

The top of the heart is an accumulation of positively charged matter swept there by winds in-flowing to meso-cyclone updrafts, and the bottom of the heart is a negatively charged basin swept clear by down-drafting winds. These are the anodic and cathodic sides of the domain, neatly separating the top and bottom of the heart. There are several other symmetries and heart analogies hidden there.

Figure 19. Laramie Mountains wind flow pattern. Blue lines are ground wind paths, Violet swirls are tornadoes, Green outlines storm downdrafts. Two other “X” shaped discharges are shown to the SE of central discharge.
Figure 20. This basin is the center of down-burst winds from the meso-cyclone. Note the massive erosion and deep, wind cut canyons.

This would have been a horrible place. The discharges blasted negative ions and free electrons away in arc blasts, while drawing positive ions inward. The velocities, temperatures and densities of the winds differed, their dielectric properties differed, their charge densities differed; and they segregated, with the positive inflow hugging the ground, accumulating dust that adhered to the statically charged land. The drag of the winds covered the land with blankets of dust, layered like fish scales, hardened by sonic pressure and electric currents that snapped and crackled everywhere.

The clouds roiled in whirling updrafts overhead. A squall-line of heavy thunderstorms formed in mirror image to the chaos on the ground, spitting lightning in carpet bomb fashion that would have made the clouds glow. Rain fell in torrents of mud and rock. Supersonic winds scoured the ground, in-flowing to biblical whirlwinds, and sonic shock waves reverberated in electrified sheets of plasma current; the entire atmosphere surrounding the storm patterned in the shock-diamond herringbone of flashing, ionized shock waves.

Lightning discharge blossomed like acne, leaving pinnacles, dikes, craters and domes in regions of high tension. Winds stirred around these discharges, disturbing the ambient winds into transient cyclones that left hardened dunes as monuments. And the winds reached supersonic speeds patterned by shock waves that embossed the land with triangular and polygonal wave-forms.

At the time they were made, with all the violent turbulence, heat and electric currents, the mountains likely resembled not so much hard granite, but puddles of hot jam, squished into form by wind and mashed by an electric fork.

Figure 21. Laramie Mountains.

This whole mountain range is direct and unequivocal evidence of electric formation. Conventional means of uplift, faulting and erosion requiring several eons of disconnected events could not, by any reasonably statistical probability produce phase diagrams 15 miles across the face of the earth with induced current paths shaped by magnetic field lines.

The features of these mountains are coherent only when recognized as the result of electrical circuits in the Earth. Each ridge line and canyon, every hill and dale, can be tied to a sequence of events that occurred at one particular phase in Earth’s evolution involving extreme electrical stress on the planet.

Conventional science can’t explain why any two of these features coexist, let alone demonstrate their disjointed theories empirically, or model them with any real plausibility on computers. But you can make discharge patterns like this with some wire and an AC power source. Or, as I have done, bring two out-of-phase plasma balls into contact.

I simply powered one plasma ball with AC current and one with DC, so it produced and in-phase/out-of-phase sequence as the AC side alternated. Between the two balls, the sparks joined and spread with each pulse, like hands clasping, then spreading fingers to push away as energy expended in reactive discharges, perpendicular to the in-phase current flow, just like the “X” patterns in the mountains.

The plasma interaction between the plasma balls didn’t occur at the glass barrier of the globes, as you might expect. It occurred inside the DC ball with the weaker voltage, pushed there by the higher voltage AC ball. Unfortunately, the experiment fried my plasma balls before I could film it. I don’t have the kind of high speed equipment needed to properly photograph it anyway. This image in Figure 21 however, does capture the effect, although I don’t know the circuitry of this set-up.

Figure 22. Tesla coil discharge (white filaments) makes connection with an electrode. Reactive power currents (violet flames) spread in a cone around the discharge.

Figure 21 shows a Tesla coil discharging to an electrode. White filaments of current direct connect to the electrode, while violet plasma flames of reactive power shoot outward in a cone around the discharge. The angle of the cone isn’t 90 degrees, but that is an artifact of this particular circuit and its phase angle.

The Laramie circuit resulted in a discharge along a dipolar alignment between circuit domains, with a capacitive reaction aimed clockwise 90 degrees from the dipolar alignment, and an inductive reaction 90 degrees counter-clockwise, forming a cross, because the domains were exactly 180 degrees out-of-phase.

So, you see the world is a more understandable place than you have been led to believe. To understand it we need to recognize the Earth contains holographic imagery of it’s past charge distributions. We need to recognize that charge distributions result from circuitry that can be traced, understood and put to experiment and modelling. The information is there to learn vastly more than we know today about its creation. To get the info, we just need to ask the right questions.

Thank you.

Easter Egg Hunt in Laramie Mountains – Part 1

In the final chapter of the Eye of the Storm series I presented Easter eggs – surprise geologic findings that confirmed a theory, or presented astonishing new information about Earth’s electric circuitry. Exploring the Electric Earth is a perpetual egg hunt, because every rock confirms the Bunny is REAL.

Electrical discharges follow patterns and behaviors that yield definitive information about cause and effect. Discharge patterns on the landscape indelibly record discharge events, like a holographic data bank.

Chapters 8 and 9 of Eye of the Storm discussed surface conductive discharges across Earth’s surface that formed the Colorado River and it’s tributaries. The trace of a surface conductive discharge is particularly rich in information, because, unlike a lightning bolt that momentarily sticks on the Earth, a surface discharge has to crawl across the surface, meeting significant impedance, seeking out conductive pathways, expending vast energies transporting matter, while explosively faulting and excavating. It takes time, it’s not energy efficient and it leaves its mark.

A stunning display of a particular type of surface conductive discharge can be found in the Laramie Mountains in Wyoming (Figure 1). Embedded in these mountains are gorges and ridge-lines that literally form a phase diagram of what took place. It couldn’t be more explicit than if God had left his blueprint on the drafting table for all to see. This fifteen mile cross is from a discharge between two out-of-phase circuits.

Figure 1. “X” marks the spot, smack in the center of the Laramie Mountains.

First, however, let’s consider the geometry of a surface conductive discharge. Each discharge branches out in fractal, self similar dendrites, to absorb all the surface charge on the conductive object it’s attached to (Figure 2a) – in our case it’s the Earth. This is diffusion limited aggregation. Each filament of a discharge soaks up charge from a particular domain. The domain is a region surrounding the spark defined by it’s electromagnetic field, from which it sucks charge of one polarity and spits charge of the other polarity in reactive power surges. It does this because it’s not insulated current like we use in electrical systems.

Filament domains cover every square inch of solid land on the planet. We call them watersheds, because they serve to collect rain waters into river channels, but that’s a consequence, not a cause. The Earth once crawled with electrical discharges. This should be self evident in any theory of planetary formation. In consensus theories, planet and comet collisions would necessitate big sparks. In Electric Universe theory, sparks are already acknowledged. Why consensus science doesn’t look for evidence of electrical discharge is evidence they don’t ask the right questions.

What is interesting – the big Easter Egg I’m getting to – is that domains cross and the filaments interact. Giant sparks result. The interaction we’ll investigate created a landscape that can only be explained electrically. The statistical probability of consensus theories doing it is nigh impossible.

Domains don’t usually cross, because skin effects occur between domains that keep them segregated as if by a membrane (Figure 2b). But they can cross and interact if domains are out of balance. An over-voltage in one could make it aggressive and overcome another. Depending on phase disparities, this can be a gentle hand holding connection, or it can be an explosive punch. We will look at one of the explosive kinds.

The Laramie Range – Shot Through The Heart

The annotated image in Figure 3 shows the area of interest, circled in violet, including the Laramie Mountains surrounded by green and red circles. The Laramie’s are part of the Continental Divide as it cuts through south-eastern Wyoming. The circles denote the major streams flowing from the mountains. Green are streams flowing to the North Platte, and thence to the Missouri and ultimately the Mississippi Valley and the Gulf of Mexico. Red are streams that flow to a sink in the basin west of the mountain range. The sink forms the Seminoe and Pathfinder Reservoirs, also circled in red west of the mountains, and the North Platte River forms the Glendo Reservoir on the opposite side, circled in green.

The high basin drains around the mountains in two flows (yellow connections). North Platte runs near Casper Wyoming around the north of the mountains, and the Laramie flows from Medicine Bow to Fort Laramie through a pass to the south of the range. The overall structure is shaped like a heart, with the mountains filling the upper half, the basin filling the lower and the rivers acting as arteries and veins.

Figure 3. Laramie Mountains circuit domain forms a Heart.

“X” Marks the Spot

The distinctive yellow “X” in the center of the range in Figure 3, is a discharge pattern that occurred when the North Platte filament of the Mississippi discharge met a separate domain with a different phase. What you see is literally a natural phase diagram that records the phase angles of the discharge. The discharge took place because the Missouri circuit was an AC current that made connection to a ground current in the basin, and sparks shot between the circuits where their domains came together. The Laramie Mountains formed as a consequence.

The discharge adopted an “X” pattern where it made connection, with east-west branches vectored along the electric field denoted by the dotted red and green lines in Figure 3. The electric field is the dipolar alignment between the lakes. The lakes, or the depressions where these lakes are, were created in the same discharge event that met at the crux of the “X” and sent reactive discharges rotated at 90 degrees to the originating spark between the circuit domains. The discharge is much like the “resonant frequency discharges”, discussed in Chapter 8 and 9 of Eye of the Storm, which created the major 180 degree (or nearly so) branches of the Colorado (Figures 4).

The geometry is different, an “X” instead of a “T”, but that is because the “X” is a resonant discharge between two existing circuit domains, whereas the “T” is a result of a single circuit bifurcating.

The bifurcating discharge meets critical resistance due to a build-up of stray capacitance that resonates the circuit, increasing frequency and therefore resistance until the current is stopped, causing it to explode in reactive discharges 90 degrees to either side of the original current, as shown in Figures 4.

The “X” is produced by two out-of-phase circuit domains coming together. The Missouri circuit is an alternating current, whereas the basin circuit is a direct current-to-ground. The two circuits go in and out of phase with each other as the AC current alternates. This makes a connection, then a discharge. The discharge is totally in the reactive power mode, because the out-of-phase circuits are 180 degrees out-of-phase and that has the same effect as resonant discharge, raising resistance to infinity and forcing the current out sideways at 90 degrees.

The first case is like putting a finger over the nozzle of a hose and forcing water to spray out sideways, 90 degrees to the direction of the nozzle. The second case is like having two hoses aimed at each other, and where the streams impact, flow sprays out sideways. In one, the blocked water pressure changes flow direction and makes a “T”, and the other, two flows impact and the pressure changes flow direction to make an “X”.

The reactive discharge dissolves the voltage differential between circuits by expending their charge – the entire accumulated charge in the Missouri circuit, in this case – in an explosive “X” shaped spark.

It created what astrophysicists call “magnetic re-connection”. Astrophysicists don’t recognize electric circuitry in space because, in dark mode, current doesn’t emit radiation they can detect. Since they can’t see it, their reductionist minds can’t make the intuitive leap to circuitry, but they do detect the magnetic flux that results. They invented the term “magnetic reconnection” in lieu of an explanation, because they can’t fathom the simplicity of two out-of-phase circuits coming together to make a spark.

Figure 5 is a .gif of “magnetic re-connection”. The moving lines are magnetic field lines – the things astrophysicists think are re-connecting – but they are actually the magnetic field lines generated by current flow oriented along the dotted lines. Their model only recognizes magnetism, so the dotted lines are just separators of the magnetic field in their .gif. The big yellow arrows pointed inwards and outwards in different quadrants of the “X” are the vectors of electric current induced by the changing magnetic field.

In the Laramie’s, induced currents were expressed in the atmosphere by plasma winds. Plasma winds drew to the crux of the discharge at ground level in the top and bottom quadrants, and blew outwards at high level like an anvil cloud in the right-left quadrants. The winds lifted in a vertical updraft over the center of the “X”. But even more astounding is the effect that magnetic fields and reactive currents had shaping the entire basin and range structure. The landscape is a 3-D photograph of what happened.

Figure 5. Magnetic field lines in “magnetic reconnection” event.

To appreciate what took place, the three dimensional nature of the circuit domains needs to be recognized. Charge diffused across the ground, as well as through the ground and into the sky. Capacitance between the Earth and sky forced mirroring currents in the atmosphere, stirring a violent storm system. Think of it as a local squall line of thunderstorms raging over the mountains at the time they were formed and while the ground discharge took place. The central updraft over the “X” formed a huge mesocyclone, flanked by smaller thunderheads to either side. Most of the energy of the discharge went straight up, into the meso-cyclone, pulsing it with energy. The wind paths to be described are ground level winds, shaped by the electromagnetic field at the planet’s surface.

The combined effect of the discharge at ground level, it’s magnetic field and the resultant plasma winds are shown in Figure 6. The discharge makes the “X” pattern, shown in red. The magnetic field lines (blue) are as shown as in Figure 5 in the pattern of “magnetic reconnection”. The wind vectors are shown in yellow.

Figure 6. Laramie Mountains – discharge currents, magnetic flux and induced winds.
Figure 7. Wind cut valleys surround the discharge “X”, patterned by capacitance and magnetic induction.

Figure 7 shows how these winds patterned around the “X”. The winds in the NE and SE quadrants flow parallel. In the NE, they cross magnetic field lines perpendicularly, flowing straight to the crux of the discharge. These winds were narrow jet streams that cut valleys as shown in Figure 8.

Figure 8. Parallel wind cut valleys in the NE quadrant. Wind lifts into central updraft at upper end of valleys where it intersects the discharge.

Jet stream winds leave valleys like shown in Figure 8, with broad rounded, or “V’ cut bottoms carpeted with silt, but no inner gorge. They may have superficial, meandering stream erosion, but not a deep, straight, inner gorge. We’ll examine more wind cut valleys later, but first let’s distinguish between wind cut valleys and the discharge blasted canyons that form the “X”.

The path of a discharge leaves canyons rough cut, with a deep inner gorge like shown in Figure 9. This is the Platte River, or north-eastern arm of the “X”.

Figure 9. NE Quadrant (Platte River side) discharge canyon has deep inner gorge.

The sides of the discharge canyon indicate arc blast which exposed granite tetrahedrons. On one side the tips of tetrahedrons (leeward side) jut out, exposed and broken (Figure 10b), whereas the other side shows the flat faces of windward tetrahedrons (Figure 10a). This indicates the mountains were laid down by a cross-wind before the discharge occurred and blasted this canyon. So, the mountains resulted from an evolving storm system that changed it’s winds, surely due to this big spark. Note the cross-hatch patterns of shock diamonds in the canyon flanks.

Figure 11 shows NE quadrant wind-cut valleys between north and east arms of the “X” discharge. Note the many transverse striations of cuts and gorges and how they change orientation between arms of the discharge. Striations come from deposition layers shaped by shock waves transverse to winds, and secondary discharge filaments between circuit paths.

Winds drew into a central vortex at the crux of the discharge, drawing dust into a pile to form the mountain. Therefore each quadrant of the discharge displays shock waves oriented by the wind in that quadrant.

Secondary discharges are from short circuiting sparks between current paths, like sparks between live, bare wires that are too close together. There is one secondary discharge visible that makes it’s own “X” pattern, center right in the image. This is a mini discharge between the AC current in the big “X” and the static build-up of charge in the wind cut lane due to the plasma jet stream. It’s essentially an AC to DC connection that makes a perfect 90 degree reaction just like the big “X”. It’s even in the same orientation – repeating, self similar forms.

In the next article we’ll return to look at more wind-cut valleys in the Laramie Mountains of Wyoming, and how they were shaped by electromagnetic forces.

Easter Egg Hunt in the Laramie Mountains

In the final chapter of the Eye of the Storm series I presented Easter eggs – surprise geologic findings that confirmed a theory, or presented astonishing new information about Earth’s electric circuitry. Exploring the Electric Earth is a perpetual egg hunt, because every rock confirms the Bunny is REAL.

Electrical discharges follow patterns and behaviors that yield definitive information about cause and effect. Discharge patterns on the landscape indelibly record discharge events, like a holographic data bank.

Chapters 8 and 9 of Eye of the Storm discussed surface conductive discharges across Earth’s surface that formed the Colorado River and it’s tributaries. The trace of a surface conductive discharge is particularly rich in information, because, unlike a lightning bolt that momentarily sticks on the Earth, a surface discharge has to crawl across the surface, meeting significant impedance, seeking out conductive pathways, expending vast energies transporting matter, while explosively faulting and excavating. It takes time, it’s not energy efficient and it leaves its mark.

A stunning display of a particular type of surface conductive discharge can be found in the Laramie Mountains in Wyoming (Figure 1). Embedded in these mountains are gorges and ridge-lines that literally form a phase diagram of what took place. It couldn’t be more explicit than if God had left his blueprint on the drafting table for all to see. This fifteen mile cross is from a discharge between two out-of-phase circuits.

Figure 1. “X” marks the spot, smack in the center of the Laramie Mountains.

First, however, let’s consider the geometry of a surface conductive discharge. Each discharge branches out in fractal, self similar dendrites, to absorb all the surface charge on the conductive object it’s attached to (Figure 2a) – in our case it’s the Earth. This is diffusion limited aggregation. Each filament of a discharge soaks up charge from a particular domain. The domain is a region surrounding the spark defined by it’s electromagnetic field, from which it sucks charge of one polarity and spits charge of the other polarity in reactive power surges. It does this because it’s not insulated current like we use in electrical systems.

Filament domains cover every square inch of solid land on the planet. We call them watersheds, because they serve to collect rain waters into river channels, but that’s a consequence, not a cause. The Earth once crawled with electrical discharges. This should be self evident in any theory of planetary formation. In consensus theories, planet and comet collisions would necessitate big sparks. In Electric Universe theory, sparks are already acknowledged. Why consensus science doesn’t look for evidence of electrical discharge is evidence they don’t ask the right questions.

What is interesting – the big Easter Egg I’m getting to – is that domains cross and the filaments interact. Giant sparks result. The interaction we’ll investigate created a landscape that can only be explained electrically. The statistical probability of consensus theories doing it is nigh impossible.

Domains don’t usually cross, because skin effects occur between domains that keep them segregated as if by a membrane (Figure 2b). But they can cross and interact if domains are out of balance. An over-voltage in one could make it aggressive and overcome another. Depending on phase disparities, this can be a gentle hand holding connection, or it can be an explosive punch. We will look at one of the explosive kinds.

The Laramie Range – Shot Through The Heart

The annotated image in Figure 3 shows the area of interest, circled in violet, including the Laramie Mountains surrounded by green and red circles. The Laramie’s are part of the Continental Divide as it cuts through south-eastern Wyoming. The circles denote the major streams flowing from the mountains. Green are streams flowing to the North Platte, and thence to the Missouri and ultimately the Mississippi Valley and the Gulf of Mexico. Red are streams that flow to a sink in the basin west of the mountain range. The sink forms the Seminoe and Pathfinder Reservoirs, also circled in red west of the mountains, and the North Platte River forms the Glendo Reservoir on the opposite side, circled in green.

The high basin drains around the mountains in two flows (yellow connections). North Platte runs near Casper Wyoming around the north of the mountains, and the Laramie flows from Medicine Bow to Fort Laramie through a pass to the south of the range. The overall structure is shaped like a heart, with the mountains filling the upper half, the basin filling the lower and the rivers acting as arteries and veins.

Figure 3. Laramie Mountains circuit domain forms a Heart.

“X” Marks the Spot

The distinctive yellow “X” in the center of the range in Figure 3, is a discharge pattern that occurred when the North Platte filament of the Mississippi discharge met a separate domain with a different phase. What you see is literally a natural phase diagram that records the phase angles of the discharge. The discharge took place because the Missouri circuit was an AC current that made connection to a ground current in the basin, and sparks shot between the circuits where their domains came together. The Laramie Mountains formed as a consequence.

The discharge adopted an “X” pattern where it made connection, with east-west branches vectored along the electric field denoted by the dotted red and green lines in Figure 3. The electric field is the dipolar alignment between the lakes. The lakes, or the depressions where these lakes are, were created in the same discharge event that met at the crux of the “X” and sent reactive discharges rotated at 90 degrees to the originating spark between the circuit domains. The discharge is much like the “resonant frequency discharges”, discussed in Chapter 8 and 9 of Eye of the Storm, which created the major 180 degree (or nearly so) branches of the Colorado (Figures 4).

The geometry is different, an “X” instead of a “T”, but that is because the “X” is a resonant discharge between two existing circuit domains, whereas the “T” is a result of a single circuit bifurcating.

The bifurcating discharge meets critical resistance due to a build-up of stray capacitance that resonates the circuit, increasing frequency and therefore resistance until the current is stopped, causing it to explode in reactive discharges 90 degrees to either side of the original current, as shown in Figures 4.

The “X” is produced by two out-of-phase circuit domains coming together. The Missouri circuit is an alternating current, whereas the basin circuit is a direct current-to-ground. The two circuits go in and out of phase with each other as the AC current alternates. This makes a connection, then a discharge. The discharge is totally in the reactive power mode, because the out-of-phase circuits are 180 degrees out-of-phase and that has the same effect as resonant discharge, raising resistance to infinity and forcing the current out sideways at 90 degrees.

The first case is like putting a finger over the nozzle of a hose and forcing water to spray out sideways, 90 degrees to the direction of the nozzle. The second case is like having two hoses aimed at each other, and where the streams impact, flow sprays out sideways. In one, the blocked water pressure changes flow direction and makes a “T”, and the other, two flows impact and the pressure changes flow direction to make an “X”.

The reactive discharge dissolves the voltage differential between circuits by expending their charge – the entire accumulated charge in the Missouri circuit, in this case – in an explosive “X” shaped spark.

It created what astrophysicists call “magnetic re-connection”. Astrophysicists don’t recognize electric circuitry in space because, in dark mode, current doesn’t emit radiation they can detect. Since they can’t see it, their reductionist minds can’t make the intuitive leap to circuitry, but they do detect the magnetic flux that results. They invented the term “magnetic reconnection” in lieu of an explanation, because they can’t fathom the simplicity of two out-of-phase circuits coming together to make a spark.

Figure 5 is a .gif of “magnetic re-connection”. The moving lines are magnetic field lines – the things astrophysicists think are re-connecting – but they are actually the magnetic field lines generated by current flow oriented along the dotted lines. Their model only recognizes magnetism, so the dotted lines are just separators of the magnetic field in their .gif. The big yellow arrows pointed inwards and outwards in different quadrants of the “X” are the vectors of electric current induced by the changing magnetic field.

In the Laramie’s, induced currents were expressed in the atmosphere by plasma winds. Plasma winds drew to the crux of the discharge at ground level in the top and bottom quadrants, and blew outwards at high level like an anvil cloud in the right-left quadrants. The winds lifted in a vertical updraft over the center of the “X”. But even more astounding is the effect that magnetic fields and reactive currents had shaping the entire basin and range structure. The landscape is a 3-D photograph of what happened.

Figure 5. Magnetic field lines in “magnetic reconnection” event.

To appreciate what took place, the three dimensional nature of the circuit domains needs to be recognized. Charge diffused across the ground, as well as through the ground and into the sky. Capacitance between the Earth and sky forced mirroring currents in the atmosphere, stirring a violent storm system. Think of it as a local squall line of thunderstorms raging over the mountains at the time they were formed and while the ground discharge took place. The central updraft over the “X” formed a huge mesocyclone, flanked by smaller thunderheads to either side. Most of the energy of the discharge went straight up, into the meso-cyclone, pulsing it with energy. The wind paths to be described are ground level winds, shaped by the electromagnetic field at the planet’s surface.

The combined effect of the discharge at ground level, it’s magnetic field and the resultant plasma winds are shown in Figure 6. The discharge makes the “X” pattern, shown in red. The magnetic field lines (blue) are as shown as in Figure 5 in the pattern of “magnetic reconnection”. The wind vectors are shown in yellow.

Figure 6. Laramie Mountains – discharge currents, magnetic flux and induced winds.
Figure 7. Wind cut valleys surround the discharge “X”, patterned by capacitance and magnetic induction.

Figure 7 shows how these winds patterned around the “X”. The winds in the NE and SE quadrants flow parallel. In the NE, they cross magnetic field lines perpendicularly, flowing straight to the crux of the discharge. These winds were narrow jet streams that cut valleys as shown in Figure 8.

Figure 8. Parallel wind cut valleys in the NE quadrant. Wind lifts into central updraft at upper end of valleys where it intersects the discharge.

Jet stream winds leave valleys like shown in Figure 8, with broad rounded, or “V’ cut bottoms carpeted with silt, but no inner gorge. They may have superficial, meandering stream erosion, but not a deep, straight, inner gorge. We’ll examine more wind cut valleys later, but first let’s distinguish between wind cut valleys and the discharge blasted canyons that form the “X”.

The path of a discharge leaves canyons rough cut, with a deep inner gorge like shown in Figure 9. This is the Platte River, or north-eastern arm of the “X”.

Figure 9. NE Quadrant (Platte River side) discharge canyon has deep inner gorge.

The sides of the discharge canyon indicate arc blast which exposed granite tetrahedrons. On one side the tips of tetrahedrons (leeward side) jut out, exposed and broken (Figure 10b), whereas the other side shows the flat faces of windward tetrahedrons (Figure 10a). This indicates the mountains were laid down by a cross-wind before the discharge occurred and blasted this canyon. So, the mountains resulted from an evolving storm system that changed it’s winds, surely due to this big spark. Note the cross-hatch patterns of shock diamonds in the canyon flanks.

Figure 11 shows NE quadrant wind-cut valleys between north and east arms of the “X” discharge. Note the many transverse striations of cuts and gorges and how they change orientation between arms of the discharge. Striations come from deposition layers shaped by shock waves transverse to winds, and secondary discharge filaments between circuit paths.

Winds drew into a central vortex at the crux of the discharge, drawing dust into a pile to form the mountain. Therefore each quadrant of the discharge displays shock waves oriented by the wind in that quadrant.

Secondary discharges are from short circuiting sparks between current paths, like sparks between live, bare wires that are too close together. There is one secondary discharge visible that makes it’s own “X” pattern, center right in the image. This is a mini discharge between the AC current in the big “X” and the static build-up of charge in the wind cut lane due to the plasma jet stream. It’s essentially an AC to DC connection that makes a perfect 90 degree reaction just like the big “X”. It’s even in the same orientation – repeating, self similar forms.

The Winds

Many readers will recall Michael Steinbacher. He theorized landscapes formed by electric winds that prevented deposition of dust raining from the sky. What I’m showing you is exactly what he was talking about.

Wind cut channels are sometimes narrow, straight and deep like the capacitive winds in figure 11, and sometimes they snake, divide and join following induction currents, cutting broad valleys with funnel shaped inflows, as shown in Figures 12 through 14. The (a) image is annotated with wind patterns and the (b) image is without markings for comparison.

Winds in the NE quadrant flowed parallel to the SE quadrant winds, and both cut perpendicular to magnetic field lines, but the NE winds shoot inside the loop of magnetic field lines to the apex, whereas the SE winds cut across the loop sideways.

In the NW quadrant, winds followed magnetic field lines, making a sharp bend at the crux of the “X” and staying inside the quadrant, but lifting as they made the turn.

The SW quadrant has a split personality. In one half winds flow straight at the crux of the “X” in direct opposition to wind from the NE quadrant. These winds met in a central updraft that lifted them vertical. In the other half of the quadrant, winds circulate, making an “S” shaped pattern that begins parallel to, and then crosses magnetic field lines perpendicularly.

Figure 12a
Figure 12b.

The reason for winds to flow either parallel to, or perpendicular to magnetic field lines is induction. Both moving magnetic fields and electric fields induce current. Reactive current is called capacitive when it follows electric fields. It is called inductive when it follows magnetic fields. Magnetic fields are perpendicular to electric fields in certain conditions. Since these mountains formed from circuits 180 degrees out-of-phase, things tend to line-up.

The Laramie circuit produced induction currents following both electric and magnetic fields. Winds in the NE quadrant were due to capacitive reactance, following the electric field. The NW quadrant winds were due to inductive reactance, aligned with magnetic field lines. The SW and SE quadrant winds were combinations of capacitive and inductive currents, but expressed in different geometries.

Reactive currents express either inductive, or capacitive behavior, or a mix in different parts of the circuit. Therefore it’s not surprising the southern quadrants have blended currents. What is surprising is how clear the pattern is etched, in spite of all the chaos and violence of this event. On display are electromagnetic forces that stirred the earth, like we would stir iron filings with a magnet.

Further away from the discharge, the southern quadrants mixed into a large tornado with two satellite whirlwinds that lifted wind in this quadrant into the mesocyclone storm (Figure 15). This tornado region sits just south of the “X” which marks the center of the mesocyclone’s central updraft. This position corresponds well with the formation of “wall clouds” that spawn tornadoes in typical thunderstorms.

Figure 15. Both southern quadrants display tornado footprints (violet) and shock waves (green). Blue are ground winds.

The Whirlwinds

Shock waves reverberated absolutely everywhere, creating nearly vertical oriented tetrahedrons layered like fish scales. Shock waves from winds sucking into the maelstrom left triangular wave-forms where separation bubbles formed beneath screaming jet-streams. They display direction of winds that confirms the wind paths described.

Where wind exceeds supersonic speed and is forced to change direction, shock waves form. They are like folds in the fabric of the wind, which is stiffened into laminar jet streams segregated by extreme pressure differentials.

Tornadoes draw ground winds from all directions, but in a supersonic tornado, there is an inlet zone where the majority of wind enters the rotation. They are drawn from ambient jet stream winds that the tornado forms tangent to. Figure 16 shows winds entering the whirlwind change direction from linear to rotation, forming a large shock wave tangent to the rotation, and parallel to the jet stream (note 1). This inflow shock wave is a distinct feature of tornado “footprints” if the winds involved were supersonic.

If the winds also rotated at supersonic speed, additional shock waves form tangent to the rotation at points of shear between the rotating winds and ambient winds (note 2).

Finally, tornadoes may form shock waves due to shearing interior to the rotation. where they curl inside the inlet zone (note 3).

Figure 16. Supersonic Tornado Shock Waves

The largest tornado in Figure 15 lies in the SE quadrant and produced Laramie Peak. It’s the highest point in the range at 10,260 ft, and sits next to a gouged-out valley that dips to 6,700 ft elevation. Both the valley and the peak are within the tornado’s rotation. Tornadoes form a cambered debris “bowl” where the winds scrape the ground. The debris is lifted away where the force of inlet winds carve at the land, and then are deposited on the opposite side of the rotation as the winds lift (Figure 17). Mt. Laramie is one such deposit.

Figure 17. Tornado mountain building.

Shock waves are evident where supersonic winds change direction. Examples in Figure 18a are tetrahedrons formed in the NE quadrant, where winds following the electric field lifted to create separation bubbles. They form tetrahedrons in linear rows conventionally known as monoclines, but they are, in fact, supersonic “sand dunes”. This is especially evident if you examine the breaks and inflections caused by constructive and destructive interference patterns.

Figure 18a shows tetrahedrons formed by jet stream winds rising to the mesocyclone in Area 1. A new set of tetrahedral dunes formed in Area 2, which deflected winds and starved Area 3, leaving a triangular interference zone that pinched out formation of tetrahedrons from the shock wave of Area 1. The gap between Areas 1 and 2 turned the wind and formed a tornado (Area 4) in it’s eddy.

Figure 18b shows these same features from another angle and how eddy currents form behind tetrahedrons in a low pressure zone beneath the rising winds. These are, in effect, destructive interference troughs behind the constructive peak of the wave pattern as winds undulated across the ground.

Figure 18a. Shock waves are green; wind direction, blue; destructive interference, orange; and tornado, violet.
Figure 18b. Shock waves green; wind direction, blue; wind eddies and tornado in violet.

Domain of the Heart

Stepping back to look at the entire heart-shaped circuit domain in Figure 19; blue lines trace the ground level jet stream winds, violet swirls indicate where tornadoes made definitive features on the ground, red “x”s are discharge patterns, and the green areas are where the thunderstorms down-drafted to the rear and rear flank of the storm (also Figure 20). The two lakes are where the circuits connected to ground deep in the Earth, leaving a distinct “V” shaped land form between them forming the base of the “heart”.

The top of the heart is an accumulation of positively charged matter swept there by winds in-flowing to meso-cyclone updrafts, and the bottom of the heart is a negatively charged basin swept clear by down-drafting winds. These are the anodic and cathodic sides of the domain, neatly separating the top and bottom of the heart. There are several other symmetries and heart analogies hidden there.

Figure 19. Laramie Mountains wind flow pattern. Blue lines are ground wind paths, Violet swirls are tornadoes, Green outlines storm downdrafts. Two other “X” shaped discharges are shown to the SE of central discharge.
Figure 20. This basin is the center of down-burst winds from the meso-cyclone. Note the massive erosion and deep, wind cut canyons.

This would have been a horrible place. The discharges blasted negative ions and free electrons away in arc blasts, while drawing positive ions inward. The velocities, temperatures and densities of the winds differed, their dielectric properties differed, their charge densities differed; and they segregated, with the positive inflow hugging the ground, accumulating dust that adhered to the statically charged land. The drag of the winds covered the land with blankets of dust, layered like fish scales, hardened by sonic pressure and electric currents that snapped and crackled everywhere.

The clouds roiled in whirling updrafts overhead. A squall-line of heavy thunderstorms formed in mirror image to the chaos on the ground, spitting lightning in carpet bomb fashion that would have made the clouds glow. Rain fell in torrents of mud and rock. Supersonic winds scoured the ground, in-flowing to biblical whirlwinds, and sonic shock waves reverberated in electrified sheets of plasma current; the entire atmosphere surrounding the storm patterned in the shock-diamond herringbone of flashing, ionized shock waves.

Lightning discharge blossomed like acne, leaving pinnacles, dikes, craters and domes in regions of high tension. Winds stirred around these discharges, disturbing the ambient winds into transient cyclones that left hardened dunes as monuments. And the winds reached supersonic speeds patterned by shock waves that embossed the land with triangular and polygonal wave-forms.

At the time they were made, with all the violent turbulence, heat and electric currents, the mountains likely resembled not so much hard granite, but puddles of hot jam, squished into form by wind and mashed by an electric fork.

Figure 21. Laramie Mountains.

Conclusions

This whole mountain range is direct and unequivocal evidence of electric formation. Conventional means of uplift, faulting and erosion requiring several eons of disconnected events could not, by any reasonably statistical probability produce phase diagrams 15 miles across the face of the earth with induced current paths shaped by magnetic field lines.

The features of these mountains are coherent only when recognized as the result of electrical circuits in the Earth. Each ridge line and canyon, every hill and dale, can be tied to a sequence of events that occurred at one particular phase in Earth’s evolution involving extreme electrical stress on the planet.

Conventional science can’t explain why any two of these features coexist, let alone demonstrate their disjointed theories empirically, or model them with any real plausibility on computers. But you can make discharge patterns like this with some wire and an AC power source. Or, as I have done, bring two out-of-phase plasma balls into contact.

I simply powered one plasma ball with AC current and one with DC, so it produced and in-phase/out-of-phase sequence as the AC side alternated. Between the two balls, the sparks joined and spread with each pulse, like hands clasping, then spreading fingers to push away as energy expended in reactive discharges, perpendicular to the in-phase current flow, just like the “X” patterns in the mountains.

The plasma interaction between the plasma balls didn’t occur at the glass barrier of the globes, as you might expect. It occurred inside the DC ball with the weaker voltage, pushed there by the higher voltage AC ball. Unfortunately, the experiment fried my plasma balls before I could film it. I don’t have the kind of high speed equipment needed to properly photograph it anyway. This image in Figure 21 however, does capture the effect, although I don’t know the circuitry of this set-up.

Figure 22. Tesla coil discharge (white filaments) makes connection with an electrode. Reactive power currents (violet flames) spread in a cone around the discharge.

Figure 21 shows a Tesla coil discharging to an electrode. White filaments of current direct connect to the electrode, while violet plasma flames of reactive power shoot outward in a cone around the discharge. The angle of the cone isn’t 90 degrees, but that is an artifact of this particular circuit and its phase angle.

The Laramie circuit resulted in a discharge along a dipolar alignment between circuit domains, with a capacitive reaction aimed clockwise 90 degrees from the dipolar alignment, and an inductive reaction 90 degrees counter-clockwise, forming a cross, because the domains were exactly 180 degrees out-of-phase.

So, you see the world is a more understandable place than you have been led to believe. To understand it we need to recognize the Earth contains holographic imagery of it’s past charge distributions. The information is there to learn vastly more than we know today about its creation. To get the info, we just need to ask the right questions.

Science, as it’s taught and practiced, does not ask the right questions. If anyone dares, they are silenced.

If you are unaware of how science deceives us, consider what belief in science means today. Undetectable matter, unaccountable energies, multiple dimensions, space-time-gravity, multiple universes and a Big Bang from absolutely nothing. It’s all a bunch of crap, and we can know this by looking – these things aren’t there and they don’t even make sense. Where are the extra dimensions?

Think of the confusion that results. The Earth hasn’t warmed in fifty years; but it will fry us in ten. Don’t use paper, it kills the trees – use plastic, it’s recyclable; don’t use plastic, it kills the fish – use paper, it’s renewable. Stop eating meat, or anything with a face; and kill the cows because they fart too much. Stop factory farms that feed millions because the chemicals harm us; organic farm so there is much less food at much higher prices that poor people can’t afford. Coffee is good for you; coffee is bad for you. Don’t sip energy from the Earth with tiny straws, it damages the environment; replace hydrocarbons with solar panels that require re-wiring the grid and giant open pit mines to extract silver, copper and rare earth minerals. Mask yourself, a virus is loose; wait, there are too many people on the planet.

Science, as it’s taught and practiced, produces the dumbest people because dogmas are reinforced by years of school and politics in lieu of critical thinking. Critical thinking requires more than following the mistakes of pompous academics who think they are gods. Understanding Nature isn’t something taught, it’s an awareness gained by knowing oneself, because we are part of Nature. Consciousness is Universal – the Alpha and Omega of all information – to reach it you must look inside your conscience. For all beings, that is our true connection to the Cosmos.

Thank you.

Eye of the Storm – Part 10

The Final Chapter

Eye of the Storm presents a case study for how electrical forces shaped the Colorado Plateau and its surroundings. In this tenth and final chapter, there are a few things to conclude, and review in summary.

What we’ve done in these chapters is reverse engineer the Earth, starting with outside layers and peeling inward, following the patterns of electrical scarring. We logically assume circuitry is the fundamental structure of the planet, since that is the very structure of life, energy and the cosmos in general. Abstract theories for cause and effect aren’t needed when the patterns of Nature are laid bare for us to see, repeating at every scale in every structure in the universe.

We merely need to recognize what makes the patterns. In the case of geology, it’s not just gravity, the mists of time, or coincidence. It’s the diffusion of charge in an environment of extreme electrical stress. Meaning, in the case of the Colorado Plateau, a huge potential difference between Earth and something else.

Charge diffusion means there is a circuit. Whether an element of charge finds a bond in atomic structure, or drifts in patterns formed by fields, it has to move. And that motion is subject to a myriad of emergent influences, but it is always patterned in the most fundamental way by the coherent influence of electric circuitry. Whether a chemical reaction, or a thermodynamic cycle, dissect it down to the quantum level and it’s all electromagnetic circuitry. 

And as a result, we can look at the planets and stars in the Solar System and see the same effects at play over and over.

If a planet has dead circuits, like Mercury, or the Moon; facing a high potential, it responds to static charge build-up on it’s surface with explosive discharges that leave it pockmarked with craters and rilles. The evidence is overwhelming, as anyone who reads Thunderbolts knows.

Then there are planets that used to be alive and are now dead, like Mars. Or those in the process of birth, or death, like Venus. And there’s a bunch of debris from planet formation and electrical interactions orbiting the sun.

But if a planet is ‘alive’ with an atmosphere and crust enveloped in a self-amplifying magnetosphere in sustained resonant feedback with the Solar System, it must have energy flowing through that crust and atmosphere, storing inside it, making it a spherical capacitor. Weather and geology is driven by this capacitance. That is pure logic and physics, once it’s recognized that Earth and the Solar System are circuits.

Correlations can be drawn because circuitry acts the same regardless of what planet it’s on, depending on type. Hence we can see Jupiter’s storms being motivated by circuitry, and correlate actions of turbulent wind with geologic patterns on Earth, and draw conclusions about the common cause. We don’t have to “theorize” – we just apply known science.

wqod5siuupzkvo4po6ql (8)

close1

What we’ve looked at so far:

Tetrahedrons

Mountain structures shaped by sonic shock waves provide the biggest evidence of all the Electric Earth ‘theories’ presented in the Eye of the Storm. If tetrahedrons and other features produced by shock waves in a wind tunnel precisely match what we see in geology, and if there is no other demonstrable process that can produce the same features, that is astonishing evidence that supersonic, plasma winds built mountains.

Konceto_and_Vichren

If supersonic plasma winds are acknowledged, then the planet’s voltage rise and other circumstances required to create them have to be acknowledged as well. And that brings all the other electrical processes described in Eye of the Storm into play, because they are inevitable consequences of charge diffusion under those circumstances.

baltorocathedral

Consensus science has decided tetrahedrons result from a combination of faulting, uplift, water erosion and huge spans of time. They have no empirical proof – no proof whatsoever – that water erosion can produce repeating, harmonic and nearly perfect geometric forms like these shown here, and many others presented in earlier chapters. Water erosion simply can’t be that consistent. The earth scientists merely have an unverified hypothesis they represent as fact-confirmed-by-consensus, and they ignore the patterns. Ignoring the obvious is scientific malpractice.

These forms are, without doubt, from sonic shock waves. Tetrahedrons are formed in the separation bubble of a reflected shock wave. It’s a region where a tetrahedral zone of low pressure forms. This low pressure zone attracts neutral and ionized dust like a vacuum cleaner equipped with an electrostatic precipitator.

The separation bubble is electrically, and pressure-polarized from the incoming plasma winds, causing static-electric attraction of ionic dust. There are also magnetic fields to attract ferrous materials in identifiable bands and sheets that conform to the shock patterns.

Layers

On an Electric Earth, the means and mechanisms are all there to form mountains: wind, water, dust and electrical bonding.

Wind, Water, Earth and Fire

Mountain features match shock-wave forms in excruciating detail far beyond the unambiguous tetrahedral shape of the separation bubble. There are harmonic frequencies, unstable wave forms, subsurface reflections, constructive and destructive interference and expansion fans found in geology – not once or twice coincidentally, but over and over again – all empirical proofs because the same features have been produced in supersonic wind tunnels for decades.

shockwave

That said, exploring mountains and researching the Electric Earth is like an Easter Egg hunt, with surprising evidence around every bend. Sometimes the evidence is so cool, so unexpected, and so hidden in plain sight, that it knocks even my socks off. So, in this final chapter of Eye of the Storm I’d like to share my three favorite Easter Eggs.

Sneeze of the Gods

dripverdant

This is a photo of the Dragoon Mountains in Southern Arizona. Historically, the Dragoons are famous for Cochise’s Stronghold, a maze of rocky defiles where Chiricahua Apache raiding parties eluded capture from United States soldiers during the Apache Wars. The Chiricahua Chief, Cochise was a recognized genius at guerrilla warfare, and used the Southern Arizona terrain strategically to stage raids and then vanish. He is supposedly buried somewhere in those rocks above the Stronghold.

If you look at these ragged pinnacles and sheets of rock stacked together like triangular dominoes, you might be tempted to agree with geologists and say; gee, it must have taken millions of years. But I can show you, it happened pretty quickly. The evidence is in this monolithic granite tetrahedron.

The tetrahedron has a drip on it. A drip, meaning the tetrahedron was deposited as a viscous mass, like candle wax, or hot fudge. The drips are highlighted in the next image.

drip12345drip999

Directly above the drips are pillow-like rocks capping the crown of the tetrahedron. The pillow-rock above the drip at far left is broken.

It’s not a volcanic lava flow. These rocks are granite and must bake under pressure, deep underground for immense time according to “science”. These fluid forms have been exposed to atmosphere since they were made, because you can’t have free flow under tons of overburden pressure.

It’s not that it’s unusual to see fluid shapes in granite boulders. Granite rocks show fluid puddling, settling and drop configurations all the time. Even drips, but they are always broken and hard to discern with a photo. But this one is huge and so obvious.

drip123drip4

Along the base of this drip, there is fluting where the falling, sheet-flow of fluid solidified in motion, like the mineral deposits from sheet-flow on cavern walls. Below the end of the drip are splatters and drops that fell free and landed on the rock face below.

drip611

A boulder with a runny nose makes no sense in consensus geology, so they ignore such a thing, or insist it’s not there. But it is, and it’s one minor confirmation of Electric Earth theory. It also presents loads of information about how it happened and the environment on Earth at the time.

The elongated pillow rocks are at the tip of the tetrahedron, therefore they constitute some of the last matter deposited into this separation bubble. This matter was deposited in a fluid state, and it cooled into a crystalline matrix of granite from the outside-in. Like candle wax, it formed a skin that retained heat inside, keeping the inside molten for longer. They are also at the top of the tetrahedron and stayed hot longest because they had the mass of the rock below them radiating through. It likely took years for this rock-mass to cool down. The pillows hang over the leeward side of the tetrahedron, so the wind was from behind pushing them over the edge, elongating their shape like water balloons.

The separations between rock is where shock waves, charged with current, evaporated material away or prevented it from depositing, leaving gaps. Shock waves in this environment were not only from the winds shearing and deflecting, but also explosive lightning strikes and reverberating thunder. They tend to electromagnetically align parallel and orthogonal, since the winds themselves were aligned with electric fields, and the shock waves carried current. The rock shrank as it cooled, creating the pillow shape.

The largest pillow-drop burst, leaving a broken pillow, and its contents spilled out in a stringy drip. In fact, the top of the broken pillow displays lightning scars that likely caused the pillow to break and drip it’s viscous guts before it completely solidified. Other pillars squeezed out their fluid like toothpaste.

drip101

I show this example because it illustrates the kind of confusing geologic detail Electric Earth theory can explain with ease, proving it’s not really confusing at all. It just takes breaking through the matrix of false paradigm and looking with fresh eyes.

It also gives a sense for the way matter was flying through the atmosphere. There was a fire-hose of hot silica in the plasma wind that formed the Dragoon Mountains. It formed like jello in a mold as ions recombined in the suction of separation bubbles.

To be clear, this mountain-building event occurred in Earth’s primordial past, near the end of a period when the continents were forming. There are mountains chock-full of fossilized dinosaurs and sea life in strata of this age, but no evidence of man. There were severe plasma storms in human history, but not filled with a fire hose of molten silica.

Ancient people did experience “coronal storms” due to some planetary conflict in the Solar System. Ancient myth is pretty clear about that. They must have been less powerful than what’s been described, yet still carried more punch than they do today. This next Easter Egg tells that story.

Handbag of the Gods

In Chapter 5 we looked at coronal storms. We looked at the San Rafael Swell and Capitol Reef, as well as Monument Valley and the San Juan River basin, as sets of dome and crater pairs produced in the eye of the great primordial storm that created the Colorado Plateau.

The weather that produced these domes and craters essentially consisted of a thunderstorm producing updraft winds, paired with a cyclone producing a downdraft at it’s core. Electrically, it formed a ring current between them, with it’s lower half being currents in the ground.

61iiJLxFnRL._SX425_

It’s upper half consisted of the meso-cyclone and cyclone connected by a jet-stream wind, from updraft to downdraft, forming an arch of condensate. This loop is what would be, under calmer circumstances, the thunderstorm anvil cloud, a layer of positive charge forming the top half of the mesocyclone. When mesocyclone and cyclone come together in a turbulent, intensely charged climate, the anvil is swept into a filament that feeds the downdraft of the cyclone. The cyclone and mesocyclone then becomes one circuit. This is how fractals “grow”. Circuits connect together and pairings become groupings and groupings become networks. That is what we see on Jupiter. The Great Red Spot is a network circuit of coronal storm loops.

We also looked at direct visual evidence of coronal loops on Jupiter, and they happen to be in almost the exact same pattern in the Great Red Spot as the dome and crater pairs on the Colorado Plateau, because the storm systems are fractals and driven by similar circuitry.

jupiter-red_00319181 (5)_LI

Also, like the ground current loops discussed in Chapter 9, these ring currents had DC input from lightning and plasma winds, and current junctions with ground, so they could act as Op Amps, using the DC currents to amplify the ring.

That realization was a pretty good egg. But it gets better.

The big Easter Egg was finding this type of storm system depicted in ancient art. In fact, it’s depicted on the oldest, most controversial and mysterious megalith ever discovered: the Vulture Stone at Gobekli Tepe.

Vulture-Stone-Gobekli-Tepe

The stone “T” pillar depicts arched clouds across the ‘sky’, or upper portion of the pillar. Yes, the mysterious “Handbag of the Gods”. And this is just my theory, of course … but the handbag depicts the box-like shape of mesocyclones seen at a distance, with the arch receding from center to behind, where it downdrafts into an unseen cyclone. A distant viewer would only see a squall line of thunderstorms surrounding the cyclone with, instead of an anvil cloud, the jet-stream to the cyclone arching away, just as it’s depicted.

d41586-019-01486-y_16714732

Note the odd figures above the clouds. I believe these represent the type of thunderstorm discharge we call sprites and gnomes. In a coronal storm, plasma discharges from the cloud tops would not be as rare as they are today. Not that they are all that rare today, but in this past environment, they would have been lit like Christmas.

Above and below the clouds is space patterned in triangles, cut across by a thin layer of rectangles. This represents the triangular pattern of rarefaction and compression in supersonic winds, the narrow layer being a faster jet-stream, or lenticular layer between conflicting winds with interference patterns making the box-like segregations.

falconmotor

The vulture, or thunder-bird is a stylized representation of the Peratt instability also known as “squatter man”, which in rock art is often depicted with a bird’s head. It would have presaged the storm, appearing in the sky as an aurora bringing the portent of doom to come. The legless birds also depict aurora that are fractal repetitions, at least in partial image, of the central plasma column.

squatman2

Below the birds, in the base of the “T”, are depictions of a wolf (the howling wind), a salamander (the tidal floods) and a scorpion (instead of a dragon, meaning ground-to-ground discharge). Arrow-headed snakes appear here and there, representing lightning, or currents. The “T” pillar itself represents Earth and Heavens; as above so below.

A popular theory about this stone is that it depicts a comet, or meteor strike. That’s because the bird is holding a ball. Go figure. I like my interpretation better.

Gobekli Tepe is dated earlier than 9,000 BC, or the time of the Younger Dryas. It’s also when Plato said Atlantis disappeared. And it correlates well, all things considered, with the time we recall as Noah’s flood, or Gilgamesh if you prefer.

Was this a shrine made by survivors? Or did it have utility in surviving the storms? They must have hid underground to survive, for even if they were in a region of calmer winds, radiation, lightning and fouled water would have surely killed them if they were unprotected. The implication is clear however, at Gobleki Tepe as in every ancient myth, there was an electrical storm the likes of which do not appear today, caused by some solar system event.

Thunderbolt of the Gods

Now the final Easter Egg. These handbags are depicted all over the world in ancient stonework. The earliest know depictions are in petroglyphs that can’t all be dated, but are believed to be from before 9,000 BC. The following is an example from Australia.

aPicture1

If you read this petroglyph right to left, like a storyboard, it first shows a small coronal storm cloud (right-most handbag) apparently forming. Next it’s a larger one above streamers rising from the ground. These would be plasma streamers, like what forms in a lightning connection, only visible in “glow mode”. Next the cloud forms something below, while something else rises to meet it. They look like hoops, or semi-circles. These would be plasma clouds reaching to meet, also visible in “glow mode”. Then there is some kind of squiggly figure, after which the clouds appear again. Never mind the kangaroo.

The squiggly figure is the plasma afterglow of a super-sized lightning bolt. What I believe this depicts is the cloud – the entire mesocyclone of a thunderstorm – collapsed in a “Z” pinch, then reforming.

That would be like a hydrogen bomb going off. But I’m pretty sure that’s what we’re seeing. I wonder if there isn’t a large crater a few miles in front of this rock. The entire colloquy is represented in stylized form in the Anunnaki figures in ancient Sumeria. The handbag, and the vine of “pomegranate” that looks like the Australian squiggly figure.

annu18

annuberry2

They are often holding pine cones, which I think represent the supersonic winds thrusting forward at the head of the storm and the fractal pattern of rarefaction and compression they would display.

In fact the entire figure represents aspects of the storms, from the birds head of aurora discharge to the legs flat footed on the ground – one uncovered and billowing muscle, like the winding updraft to a meso-cyclone and the other covered, unable to be seen, like the returning airflow down a cyclone.

It’s as if the gods – the winged, anthropomorphized aurora that presaged the storm – are delivering the storm; presenting handbags of terror (storm) pine cones of destruction (winds) and massive thunderbolts (lightning). It even displays a sense of hierarchy between heavenly and earthly phenomena, as in the gods and demi-gods endemic to ancient religions.

I know people will disagree, because everyone has a theory about the “handbags”. Some think they are for a drug stash, as if the ancient gods munched pscilocybin all day. Others say they carried pollen, but who collects pollen, and why? It makes more sense these figures symbolically commemorate the most Earth shattering event know to man.

Whether you agree, or not, I want you to understand. The events I describe are in our history. They influence us today. We are just confused by liars and lazy thinkers in our midst, from academia, to media, to politics. Science to culture to power. Break the bonds of the brainwash they feed us and think for yourself. Do it and you will find answers.

Nature makes itself known. It’s up to us to raise our consciousness to its level. Once done, truth is self evident. At least this is my experience. I have no special talent, I’m just keenly aware of what’s around me and eternally curious as to how it got there. Ask the right questions and Nature shows the answer. I refer to this feedback circuit as God.

I present these conclusions for your consideration. I won’t deny other possible answers exist, and we need to consider everything. But there is a bit of urgency in the message I get from all of this, which I’m compelled to share.

Earth’s internal circuits are warming-up. Volcanic and seismic activity is increasing all along plate boundaries that define the sub-surface currents. Weather has become a bit strange. At the same time, the Sun is entering a minimum period of energy output.

Solar minimums have direct correlation with colder weather on Earth, but also higher seismic activity. The Earth has to respond to the change in Solar energy by releasing some of its stored energy in order to maintain its balance. A reduction in Solar wind means a reduction in energy induced by Earth’s magnetic field. With less input energy, internal currents wane and the magnetic field weakens and expands. But as the magnetic field expands it captures more solar wind, increasing induction.

global temperature graph

This tug of war plays out as Earth tries to keep pace with the Sun, but it oscillates Earth’s circuitry as currents ebb and flow, creating resistance and heat that has to release. This happens in the transient phase, shifting from maximum to minimum and vice versa. It’s the rate of change that matters. We may see a dramatic increase in the frequency of earthquakes, volcanoes and severe weather as we rise out of the minimum.

We are also experiencing a magnetic pole shift. The magnetic pole shift is related to changing crustal currents. How I don’t know (yet), but there is feedback between them, because there has to be. It’s predictable, it’s physics and it’s happening.

If there is one thing that should be evident from reading Eye of the Storm, it’s that Earth is an electric circuit driven by whatever is in its core. We don’t know what the “core” is. It’s not a spinning ball of iron. The surface effects we experience outside of the crust are driven from within as a result of how the core reacts with the solar system. The surface effects are a capacitive reaction to changing energy levels in the core, because Earth is a spherical capacitor.

Crustal boundaries surround the Indian Ocean, and above segments of these currents are some of the most active volcanic regions, including the Indonesian Islands and Madagascar. They are very active right now.

Volcano-in-eastern-indonesia-erupts-thousands-evacuated-620x414

These are likely the largest currents on Earth and the closest together, producing magnetic flux between them. There is already a large gyre in the ocean, deep off the coast of Madagascar circulating between these currents.

Does this mean there are catastrophic storms in our future? Damned if I know. Check what the ancients say. All I know is we better get off the dime and understand this Earth as it really is and stop listening to academics.

Thank you all for reading. Thank you for the gracious comments. These articles appear on my website, thedailyplasma.blog, as well as Thunderbolts.info. and can be accessed by anyone entirely free. As people wake-up to reality, please point them to this content.