Tag: Electric Earth

Tornadoes – Cold, Dusty Plasma

People who witness a tornado never forget. They may recall awe and beauty, or awe and terror, depending on their vantage point. Either way, they will be awed and it will haunt them forever.

For many, it becomes an obsession. An obsession to watch, film, chase, drive beneath – a need to understand. Or else, an obsession to hide every time the wind howls.

A tornado is nature’s demon. Winds in rotation, tight as a knot, with a body and energy that give it life, coherency, and a dislike for trailer parks. Most terrifying of all, it will chase you down, suck you off the ground and spit you back naked, muddy and dead.

That’s demonic.

It’s size and power seems to materialize from thin air. And it does. It’s nothing but air, at least until it picks you up, along with tons of dirt, cars, buildings and cows. All are then part of the coherent, rotating structure.

But is it really just air, spinning like a top – or is there something too organized about the mayhem – something we still don’t know?

The Mystery…

220px-dimmit_sequenceNo one fully understands tornadoes. Scientists and weather nerds chase them all over the Midwest every spring; they can’t hide. So what’s the mystery?

There are a few, but the primary one is how this coherent mass of rotating air gets vertical and ‘descends’ itself to the ground.

Tornadoes are believed by consensus science to be a purely thermodynamic event, caused by convection of moist, warm air into cold jet streams above, and the shear winds and condensation that results.

It’s no reach to understand how shear winds generate rotation, but the shearing in thunderstorms tends to be drafts traveling up and down, and cross winds at different elevations. Either shear can produce rotation, but only in the horizontal plane.

The theory approved by consensus science for grade school education, is that the column is created by shearing horizontal winds, one over the other, that create a horizontal rotating mass that gets lifted and stretched by updraft winds into a vertical vortex. What they don’t tell the grade-schooler’s is that the physics doesn’t work.

To illustrate the issue, think of a similar vortex, like a whirlpool in a bucket of water. If you stir the water with a spoon near the surface of the water, at first no whirlpool appears.

Keep stirring…

After awhile, when you have water rotating at the top of the bucket, the vortex forms. But it won’t extend any deeper than where the water is rotating. It won’t reach bottom until the rotation translates downward and the whole bucket of water is spinning.

130px-a_whirlpool_in_a_glass_of_waterIf you want to make a whirlpool fast, put the spoon all the way down and stir at the bottom of the bucket. Then it forms quickly, like opening a drain. To ‘descend’, the vortex needs to be pulled down by the low pressure created by centrifugal effects of the rotating water around it. If the bulk body of water around the vortex isn’t rotating, the funnel loses coherency and dissipates.

What is really happening is the vortex is created at the bottom of the bucket when you stir, and the funnel descends to meet it. The vortex has to be there first, and made to spin faster to draw the void of air down, which is the funnel we see.

So, one might ask, isn’t the funnel sucking like a straw and pulling itself down a column of air like a climber on a rope? Does your vacuum cleaner hose pull you down when you hold it a foot, or so above the ground?

No, there is nothing for it to pull on. The air beneath the hose keeps getting replaced as fast as it’s sucked in, so there is no tension created. A sufficient low pressure region can’t develop beneath the hose to provide any force unless you hold it less than an inch away from the ground, where friction can slow the inflow and generate a region of low pressure between the hose and the ground.

Just like the whirlpool, there needs to be a low pressure region to pull the funnel down and vortex winds at ground level. Before a tornado touches down, these winds need to be there. But there is often relative calm before a touchdown. All hell doesn’t break loose until after.

Consensus Theory #1…

slide1
Yes, it’s usually counter-clockwise, but I’m not going to redraft it.

Some researchers do predict rotating ground winds initiate tornadoes. The appearance of descent is really not the swirling winds of the tornado, but the visible condensation forming in the low pressure inside the vortex, and this condensation descends as the vortex ‘spins-up’, rotating faster.

In this concept, the tornado’s wind is already there in a compete column surrounding the descending condensation. It’s thought the tornado is initiated by a ground level vortex wind and this ground vortex controls the spin of the tornado.

Inflowing ground winds are certainly in the equation during the tornado’s life. But before touchdown, the existence of a ground vortex hasn’t been verified. It’s thought to be at low wind speeds, below speeds that would cause damage. It’s not until this ground vortex spins itself-up enough to start lifting dust that the tornado technically ‘touches down’ and we notice it.

The issue with this theory is that rotating funnel clouds are commonly seen that never seem to touch down at all, or be associated with ground winds, which implies they are rotating up there by themselves caused by something other than a ground vortex. This puts tornadogenesis back in the clouds.

Even in the event a subtle ground vortex is involved in creating a rotating column, how does this ground vortex form? Data is lacking because no one can predict where a tornado is going to land in order to set up the instrumentation.

Consensus Theory #2…can it still be a consensus?

220px-1957_dallas_multi-vortex_1_editedAnother theory proposes that the vortex is drawn to the ground when a descending column of air and rain wraps around a funnel cloud.

It’s called an occlusion downdraft, and it’s commonly seen, but not always. The theory requires the rainy downdraft wrap around the funnel to form a concentric vortex that merges with the funnel cloud and creates a smoke ring effect, a torus of rotating winds, with a longitudinal momentum that drags the funnel down. No photographs of this torus exist, as far as we know.

It sounds like a complex process. Too complex to explain several types of tornado that form when the mechanisms required aren’t there. Non-supercell tornadoes, albeit typically weaker, form when the conditions required for rain-wrap aren’t present.

Strange behavior…

Non-supercell tornadoes are circulations that do not form from organized storm-scale rotation. These tornadoes form from a vertically spinning parcel of air already occurring near the ground.

One non-supercell tornado is a landspout. A landspout is a tornado with a narrow, condensation funnel that forms while the storm clouds are still growing and there is no rotating updraft – the spinning motion originates near the ground.

220px-trombe
Waterspout

Waterspouts are  generally classified as non-supercell tornadoes. Waterspouts have a five-part life cycle: a dark spot on the water surface, spiral pattern on the water surface, a spray ring around the pattern, a visible condensation funnel, and ultimate decay.

Again, the life cycle begins at the surface, when a “dark spot” forms. They normally develop as their ‘parent’ clouds are still in the process of development.

Waterspouts are known for raining fish. From as deep as three feet below the surface (how do they know this?) fish can be lifted into the air and deposited as far as 100 miles inland.

Tornadoes display other perplexing behavior. Witnesses claim seeing tornadoes die suddenly and another rapidly form in apparently the same track as the previous.

220px-tornado_with_no_funnelDid they see one tornado fluctuating in strength, or two vortexes in sequence? The disappearance and reappearance is so rapid it is hard to imagine the atmospheric dynamic that would cause it.

Mounting evidence, including Doppler mobile radar images and eyewitness accounts, show most tornadoes have a clear, calm center with extremely low pressure, like the eye of a hurricane. The mystery of this is why it surprises anyone, but it’s still fascinating.

What follows is an excerpt from a 1930 report by Mr. Will Keller of Greensburg, Kansas, eye witness to the inside of a tornado:

“Steadily the tornado came on, the end gradually rising above the ground. I could have stood there only a few seconds but so impressed was I with what was going on that it seemed a long time. At last the great shaggy end of the funnel hung directly overhead. Everything was as still as death. There was a strong gassy odor and it seemed that I could not breathe. There was a screaming, hissing sound coming directly from the end of the funnel. I looked up and to my astonishment I saw right up into the heart of the tornado.

There was a circular opening in the center of the funnel, about 50 or 100 feet in diameter, and extending straight upward for a distance of at least one half mile, as best I could judge under the circumstances. The walls of this opening were of rotating clouds and the whole was made brilliantly visible by constant flashes of lightning which zig-zagged from side to side. Had it not been for the lightning I could not have seen the opening, not any distance up into it anyway. Around the lower rim of the great vortex small tornadoes were constantly forming and breaking away. These looked like tails as they writhed their way around the end of the funnel. It was these that made the hissing noise.

I noticed that the direction of rotation of the great whirl was anticlockwise, but the small twisters rotated both ways – some one way and some another. The opening was entirely hollow except for something which I could not exactly make out, but suppose that it was a detached wind cloud. This thing was in the center and was moving up and down.”

There are other types of tornado-like phenomena. Gustnado’s that form at storm fronts display the characteristics of a tornado touchdown, kicking up dust and debris in a vortex on the ground, but without any apparent rotation, or funnel above.

Sometimes without even clouds above. Dust devils also form this way. Isn’t there a common dominant influence underlying all these atmospheric whirlpools?

Now let’s remember that we live on an Electric Earth…

Take the blinders off, and see if there is another way to look at tornadoes.

By taking blinders off, it means adding electromagnetism back into the picture. It has been excluded almost completely by consensus science, even though it is the most pervasive feature of thunderstorms – the very things that makes tornadoes.

The word tornado is an altered form of the Spanish word tronada, which means “thunderstorm”. This in turn was taken from the Latin tonare, meaning “to thunder”. So even the etymology recognizes the obvious, fundamental connection that many, in influential positions, miss. With that in mind, let’s digress a moment to discuss lightning.

Atmospheric Circuitry…

We don’t notice what’s happening electrically in our atmosphere, because we live on the earth’s surface in an equipotential layer. We don’t notice, that is, until a thunderstorm arrives.

Our atmosphere carries an electric field. The atmospheric field varies widely – from night-to-day and summer-to-winter – between 100 volts per meter vertically in clear weather, to orders of magnitude stronger during thunderstorms.

dust_devil
Dust devil

For example, dust devils have been researched by very dirty scientists who measured a vertical electric field gradient of 10,000 volts per meter, even in small whirlwinds. They also found them to produce radio noise and a fluctuating magnetic field at frequencies of 3 to 30 Hz.

Since no intrepid storm-chaser has yet stood under a tornado with an antenna and voltmeter (not for lack of trying) we don’t know the potential in a tornado. Assuming an average tornado column to be three km long and carrying the same potential gradient over the column, that would be a 30 million volt potential. That’s two and half million car batteries connected in series.

A strong electric field will lift materials off the ground and into the atmosphere. Field experiments indicate that a large dust devil measuring 300 ft across can lift about 15 tons of dust into the air in 30 minutes.

Electricity is also known to aid formation of sand storms on Earth, and NASA believes it to be instrumental in raising dust on the Moon, dust devils on Mars, and tornadoes in the atmosphere of the Sun.

Normally the atmosphere carries a minor fair weather current of one pico-amp per square meter. This tiny current is thought to be a return current caused by lightning around the world, diffused throughout the atmosphere. This tiny, diffuse current is only part of the return circuit in a lightning bolt, however.

Keep stirring…

noaaelectrical-charge-in-storm-clouds
NOAA Image

Lightning from a thunderstorm has no ‘electrode’ in the sky. It comes from accumulations of charge in the clouds – pools of electrons, or ions, like the accumulated charge on a capacitor plate.

Temperature and pressure moved by shearing winds take the place of the plates in segregating regions of charge.

A study using interferometer  and Doppler radar to correlate lightning with updraft and downdraft winds, showed that lightning avoids the updraft core (red arrow in the image) and forms in regions of weaker, lower pressure winds around the updraft. As a storm intensifies and the updraft speeds up, lightning frequency dramatically intensifies.

Fast updraft winds and their role in supercell structure is a discussion for another day, however it will be shown they are likely motivated by electric current in the storm in the first place, so it is not surprising in an electric atmosphere that positive ions in a powerful updraft would collect negative charge around the updraft column, which is where the study found lightning to initiate.

220px-lightning_over_oradea_romania_croppedUpdraft winds don’t produce much lightning until they reach 10 to 20 mph. Then strike frequency escalates with updraft speed. From 20 to 50 mph wind speeds, lightning frequency might be 5 to 20 strikes per minute, whereas above 90 mph, the flash rate can exceed one strike per second.

It’s like a motor running.

Coincidentally, cloud-to-ground lightning frequency is seen to decrease as a tornado touches down, and return to the baseline level when the tornado dissipates. This is an important point, but we’ll return to it later.

The charged layers in the cloud, and the thin, flashing filament we see in common cloud-to-ground lightning, is only part of the event. There is also buildup of positive charge on the ground. The ground charge forms as a pool of positive ions over the surface of the land and its features, accumulating in concentration at high points. The positive ions form when electrons are stripped away from air and surface features by the powerful electric field.

The lightning bolt initiates when the negative charge invades the air below with filaments of charge called leaders. Remember, there is an amplified electric field of millions of volts between the storm clouds and Earth. The leaders zig-zag downward in stepped segments while the ground charge reaches up in a filament of positive ions called a streamer. When leader and streamer meet, the channel is complete and dumps the negative cloud charge to ground. This is called an arc discharge.

Electrons flood through the channel at relativistic speed, creating a magnetic field that constricts the channel and the current, called a z-pinch. It is the dielectric breakdown of atmosphere to allow a discharge – a short circuit between the clouds and ground.

The ionic ground charge follows, ions being heavy and therefore slower than electrons, rushing up the channel at 60,000 miles per second in what is called a return stroke. It’s the return stroke we see emitting light from particle collisions in the constricted channel. Return strokes often repeat as new charge pools and discharges, producing multiple flashes until charges equalize.

It all happens within tenths of a second, involving volumes measured in cubic kilometers. So these charged layers in the clouds and on the ground must be highly coherent.

Dark – Not Arc…

Arc discharge is the extreme end of the spectrum for electrical discharge, however. There are other types of discharge that occur under different regimes of electric field intensity, charge density, and the polarity and physical properties of the electrodes and medium the discharge takes place in.

The channel lightning travels in is a fully ionized plasma generated by the strong electric field between the cloud and ground. The leaders and streamers are the plasma channel being created. Other modes of current  flow can occur without dielectric breakdown, or full ionization of the plasma. These currents don’t create an arc of lightning.

300px-glow2arc
Glow discharge in a Plasma

1103px-glow_discharge_current-voltage_curve_english-svg

The chart above demonstrates that extremely high current is required to make an arc, (red part of curve). Medium currents produce only a glow, like the polar aurora and neon lights (blue curve). Low currents will produce no light emission at all (black curve).

From ‘A’ to ‘B’ is a regime of discharge initiation, where reactions are taking place to saturate the channel with ionization. Then from ‘B’ to ‘D’, current rises exponentially with very high voltage. Current density is low enough though, there are few particle collisions and it emits no visible light. This is the regime of dark discharge, or dark current mode, and it’s invisible.

280px-airshower-svg
Cosmic ray creating an avalanche.

In this region, the high electric field gives electrons enough energy to ionize a neutral atom, releasing another electron which initiates a chain reaction. The new free electron ionizes another neutral in a secondary reaction and this continues, leading to an avalanche of new ion and electron production. The avalanche results in the exponential current rise as charge density amplifies. It’s called a Townsend discharge.

When current is high enough, visible glow can occur near the electrode and edges, sharp points, or other narrow objects where charge collects. This is called corona discharge. One form of corona discharge is St. Elmo’s fire.

Another glow discharge related to corona discharge is dielectric barrier discharge between two parallel plate electrodes. Both occur at high voltage, low current in atmospheric air below the dielectric breakdown threshold, and without the explosive blast and temperatures of an arc.

filamentous_dielectric_barrier_discharge

A dielectric barrier discharge, shown above, demonstrates how current collects itself into plasma streamers. The discharge is occurring in air between two parallel electrode plates layered with mica at about 30 kHz, with a discharge gap of about 4 mm. The wide foot of the discharge is ionic charge pooling on the barrier surface.

Cold, Dusty Plasma…

For air to become plasma and carry current, the air has to be partially ionized. A plasma state can be defined by “plasma density” – the number of free electrons per unit volume, and the “degree of ionization” – the proportion of atoms that have lost, or gained electrons.

Even a partially ionized gas in which as little as 1% of the particles are ionized is considered a plasma, responding to magnetic fields and displaying high electrical conductivity. A partially ionized plasma is often referred to as a “cold plasma”, and highly ionized plasma is referred to as “hot”.

A negative corona begins with an ionization event, such as a pooling of ions in a strong electric field generating primary electrons, followed by an electron avalanche. Secondary electrons are created by photoelectric effect at the electrode.

Corona discharge will produce dark current by generating the electrons and ions in a current flow that has a particular geometry. The glowing region that halos around the point electrode is where primary ionization occurs. The charged species then enter a ‘drift’ region where they follow the electric field, but are dispersed by charge repulsion in a spray, like a wonky shower-head.

It’s in this region secondary ionization occurs. If electrons/ions have enough oomph from the electric field, the secondary reactions will continue to occur, maintaining a current to the plate electrode. If not, they recombine with positive ions and neutralize, extinguishing the current.

slide2

The center of the coronal discharge is more energetic and isolated from interaction with surrounding particles of opposite charge, so more often cascade into avalanches. Closer to the edge of the discharge, weaker reactions manifest in transfer of momentum and heat between the ions and neutrals.  This causes a current density distribution, as shown by the curve at the bottom of the above diagram. The current segregates into channels oriented to the distribution.

slide3The geometry in a negative corona is three concentric regions of emission. The inner region, corresponding to the peak distribution of charge density, is ionizing plasma where high energy primary electron-neutral collisions avalanche. The intermediate ring is a non-ionizing plasma where electrons collide with neutral oxygen and water vapor with insufficient energy to avalanche, but produce a plasma of primarily negative ions that drift to the flat plate electrode and complete the circuit. The outer region is a flow of negative ions and sparse electrons known as the unipolar region.

These regions correspond well with the anatomy of a super-cell, assuming charge accumulates around, or near the central updraft that breathes life into the storm.

slide2The Ionizing Plasma Region…

Directly beneath the core of the corona, avalanches can be energetic enough to establish sputtering arcs. We see it as negative cloud-to-ground lightning, which observations concur, happen around the updraft and with a frequency regulated by the updraft speed.

The Unipolar Region…

The uniplolar region is the outer ring of the corona. It’s not a plasma, but is composed of a low density of negatively charged ions drifting towards the plate electrode, transferring energy primarily as heat and momentum rather than electrical current. Momentum transfer manifests as downdraft winds by the process of electrokinesis.

Electrokinesis is the transfer of momentum from the charged particles to the surrounding neutrals, creating an ‘electric wind’ that moves the bulk fluid along the electric field. Air ionizers and blade-less fans work by electrokinesis, by partially ionizing air in the same fashion, with a coronal discharge.

In humid air, ions will also be hydrated causing selective water transport. Therefore, unipolar drift manifests in a thunderstorm as the forward (FFD) and rear flanking (RFD) downdraft winds, rain and hail.

The Non-ionizing Plasma Region…

The intermediate channel of non-ionizing plasma generates ions at low energy that precludes avalanche, but carry current as these ions drift to the plate. If the ionization rate exceeds the rate of recombination, the plasma will build a tendril (actually called a streamer, but we’ll use the term tendril to distinguish it from a lightning streamer) from the point electrode to the plane electrode (earth) pushing the plasma generating ionization region ahead of it, and drawing behind it a cloud of cold plasma. When this plasma hits the plane electrode a cathode spot is produced, and the electric field redistributes along the plasma channel that is created.

The Tornado…

The cathode spot on the ground (plate electrode) draws positive charge to it, dragging neutrals by electrokinesis, and creating the in-flowing winds that generate a vortex. This is the moment of touchdown, as charged air and dust flow in and spiral upwards around the invisible plasma tendril.

The action is analogous to the lightning bolt leader and positive ground streamer that meet to create a channel for arc discharge, only in this case the plasma channel is partially ionized, diffused with predominately neutral species. Its energy and charge densities are too low to make an arc, so it forms a complex plasma channel called a Marklund Convection.

400px-marklund-convection
Marklund convection, showing diffusion of neutral air away from current tendril (blue arrows) creating low pressure. Plasma drift (green arrows) draw positive ions at ground level, creating inflowing winds to the point of contact with the plate electrode.

Rotation is a natural consequence for two reasons. Neutral air is diffused away from the Marklund current creating low pressure. But positive ions near the ground drag air, dust and debris to the ground contact and create in-flowing winds and a sudden change in direction up, and around the tendril. The meeting of these opposing winds is, by definition, a vortex.

But current in plasma will itself rotate, taking a helical path as it interacts with the magnetic field around it. The appearance of a tornado is precisely what one would expect from such a current. Increasing current flow “spins up” the tornado.

It forms an inner spiraling negative current to ground and an outer spiral of positive ionic wind flowing up to the source of coronal discharge.

slide1

Because the tornado is a cold, partial plasma carrying a significant mass of neutral air and dust, it can be pushed by winds to create a slanted, or even kinked path, and travel away from it’s point of origin.

Now let’s return to the storm that most often creates tornadoes. Super-cell morphology provides all the effects of corona discharge. The super-cell has distinct regions of updraft and downdraft winds (electrokinesis), rain and hail (water transport) and sputtering arcing discharge (lightning) which we discussed earlier, forms around the central updraft.

classicsupercell

slide4

Evidence…

If tornadoes are caused by coronal discharge generating a Marklund convection current from cloud-to-ground, what are some tell-tale signs?

Wall clouds…

One piece of evidence may be the wall cloud. Wall clouds form before a tornado in typical supercell evolution. It will develop rotation and sometimes its clouds can be seen to rise and fall in an agitated manner. Puffs of low level clouds are drawn to it below the main cloud base.

It creates a vertical wall of cloud that is incongruous to the general slant of the storm cloud and winds in-flowing to it.

This may be evidence of the vertical orientation of the electric field created by the coronal discharge and ions transported down with moisture. The electric field doesn’t pay attention to the wind.

lakeviewThe funnel cloud doesn’t always emerge from the center of the wall cloud, as shown in most consensus science diagrams. The tornado funnel often appears along the edges of the wall cloud, or from the surrounding clouds.

This is because the tendrils of current are mobile on the negative electrode and can wander. They can also multiply, creating several tornadoes.

Characteristic of parallel currents, multiple tornadoes stand off from each other as if repulsed like two parallel wires flowing current in the same direction. Rare occasions when tornadoes seem to merge, it may be that one simply dies as the other steals it’s current.

The sudden disappearance and reappearance of tornadoes, and the reported skipping, or lifting they seem to portray, are likely caused by pulsating current from an unstable coronal discharge that weakens until recombination steals the current, and then revives when the rate of ionization again overcomes the rate of recombination and a complete circuit to ground is reestablished.

Tornadoes and lightning…

As mentioned earlier, lightning frequency is highest around the central updraft and increases in frequency with the strength of the updraft winds. The central updraft of warm moist air carries positively charged ions and dust particles into the center of the storm. A negative corona might be expected to form around this updraft, attracted to the positive current generated, excited by the electric field and collisions with neutral atoms.

The physics of coronal discharge studied in the lab is generally done with point, or wire electrodes that have a constant position and shape. An electrode formed in the clouds probably forms an amorphous ring structure around the in-flowing central updraft, where charge densities can migrate.

tornado_pic_1

When a tornado forms, it’s been noted that cloud-to-ground lightning frequency diminishes until the tornado dies, and then it picks-up again to the baseline level. This is evidence the electric field has re-aligned along the Marklund convection in the non-ionizing plasma region, sapping energy from the ionizing plasma that manifests lightning and migrating it to the outer portion of the ring.

Sights, smells and sounds…

Tornadoes are formed by a cold plasma, dark current, so light emissions aren’t evident, at least below the clouds. Storms that produce tornadoes are often characterized by a greenish tint in the clouds, however. The green tint is excused by many scientists as a reflection of city lights, and their search for green-tinted city lights continues. The green glow of a coronal discharge internal to the cloud formation explains the green tint.

Luminosity in the clouds and the funnel are also reported. Consensus science blames this on misidentified sources of light from lightning, city lights, or flashes from downed power lines. Some of it no doubt is, but some of it is likely the effect of coronal discharge. Lightning flashes don’t make a continuous glow.

Ionized oxygen  can recombine to produce ozone, which has a distinctive chlorine-like “gassy smell”. As Mr. Keller’s close call with the mouth of a tornado attests, a “gassy smell” was present.

220px-tornado_infrasound_sourcesMr. Keller also reported he heard hissing sounds from the multiple vortex tendrils at the base of the funnel. Funnel clouds and small tornadoes are known to produce harmonic sounds of whistling, whining, humming, or buzzing bees, like electricity. As ozone is liberated it produces such a hissing sound.

Energized transmission lines subject to over-voltage conditions produce all of these same effects: faint luminescent glow, ozone production and it’s accompanying hiss and smell. It’s cause is coronal discharge.

Tornadoes also produce identifiable infra-sound. It’s inaudible to the human ear, but it can be felt. It can produce nausea, agitation and body heat… not that a tornado really needs infra-sound to do that.

Lightning is seen internal to the funnel, again as reported by Mr. Keller. These are likely a form of cloud-to-cloud discharges, between the counter-flowing positive and negative currents in the Marklund convection.

Tornadoes are seen to have an inner and outer column, although this is disputed by consensus scientists as another illusion. The inner column, however, is seen if the outer dusty sheath dissipates, or is blown away. This is consistent with the double wall formed in a Marklund convection.

cordell
Double wall – an inner tube with an outer sheath of dust can be seen.

There goes Aunt Em…

A good friend who had the misfortune of being in a tornado, said he was momentarily lifted from the bathtub he was hiding in because he was weightless. He swears no wind was lifting him – he was simply weightless.

Stories from other survivors also report the sensation of momentary weightlessness, floating as if no wind was pushing. This is likely because of electrokinesis.

At ground level, the accumulation of positive charge beneath the influence of the electric field from the storm may be charging items, including people and lending them an attraction to the negative electrode overhead.

Perhaps this explains other odd events reported. For instance a house demolished, yet a table sits with a glass of water in the middle of the carnage untouched. Maybe if you don’t want to get picked up and carried away, give yourself a negative charge. Of course, too much of that can kill you, too.

Tornadoes emit on the electromagnetic spectrum as measured at a distance by researchers. Electric fields are detected and tornadoes emit sferics, the same type of broadband radio noise lightning discharges produce.

Non-super-cell tornadoes…

220px-great_lakes_waterspoutsSo what if there is no super-cell? How do all the other vortex phenomena form – landspouts, waterspouts, gustnadoes and dust devils, and how are they related.

By the same mechanism proposed here for the super-cell tornado, only in lower energy form.

Funnel clouds, which never result in a touchdown are a tendril of Marklund convection current that begins to recombine faster than it generates ions, and it dies. Landspouts, gustnadoes and waterspouts all begin with a surface disturbance – a vortex without a cloud, or at least not one showing a wall cloud, or rotation.

These may be evidence of ground contacts of the first pulse of the tendril, stimulating the ground vortex to initiate the tornado. The lack of wall cloud, rotation, or in the case of a dust devil, no clouds at all, are because the electrode is simply invisible. A dark discharge from an amorphous collection of charge in an electric field wouldn’t necessarily glow, or generate a condensation funnel.

A powerful thunderstorm creates a charged environment and elevates the electric field, regardless of whether it reaches super-cell proportions. With no organizing rotation in the clouds, the corona may very well be more like a plate electrode than a point, spread out across the sky. In this case, barrier discharge which we discussed earlier, may be closer to the mechanism that shoots tendrils without a rotating cloud overhead. Even in clear weather, thermal convection would create an updraft that could generate a diffuse corona.

funnel-800

This comports with the observations of twisters of all kinds, including dust devils and spouts which are seen to begin on the ground. Or water – in the case of a waterspout – where documented evolution begins with the mysterious “dark spot” on the water.

In theoretical research, not many people are even looking for electromagnetic influences except with respect to lightning. Several surveys have attempted to gain electrical data. Balloons, drones, airplanes and rockets, people in armed vehicles and stationary sounding platforms of various kinds have been deployed to take readings on tornadoes.

The extreme winds, physical danger and uncertainty in pre-positioning instrument arrays has defeated many attempts. As a result, science is relying on chasers, doppler radar and interferometers to get detailed information on wind speeds, pressures, temperatures and other physical parameters, but not so much about the ions and electric field.

Cold plasma with only a percent, or so of ionization may  remain below the sensitivity of their instruments. Especially on the ground during tornadogenesis – they either arrive to late, or don’t live to tell about it. Airplanes have flown through storms and mapped clouds of electrons and ions, so we know vast sheets of charge accumulate up there.

Waterspouts were examined for electric fields. The researchers didn’t detect an unusually strong field and concluded electricity had no significant influence. There is always an electric field. Perhaps a waterspout doesn’t require as high a voltage. After all, salt water in particular, is composed of easily ionized constituents. More likely, the scientists didn’t get there on time to record the initiating pulse of the tendril, when the highest current and realignment of the electric field occurs.

We live on an Electric Earth. Weather, climate and even the land forms display it, we just need to learn how to recognize it. So, we’ll look deeper into the super-cell next time, because no one else seems to recognize it’s a thermopile!

290px-chaparral_supercell_2

The Monocline

Re-posted courtesy of Thunderbolts.info

In previous articles, we discussed evidence of electromagnetic and hydrodynamic forces that shaped the landscape with arcing currents in an atmospheric surface conductive path. We theorized these currents sent bolides of plasma jetting through the atmosphere, blow-torching the ground below into craters and mountainous blisters, based on observed characteristics of the landscape.

The evidence on the landscape is in the form of triangular buttressed mountains and related land forms that display the shape of windblown deposits created by hot supersonic winds under the influence of shock waves. The triangular forms are created by reflected shock waves, heat, winds, molten rock and dust stirred by the blast of the arc.

It’s an amazing concept that has the potential to be proven, as discussed in Arc Blast – Part 1, 2 and 3, and in the accompanying “Space News” episodes, “EU Geology – A New Beginning”, “The Arc Blasted Earth” and “Extraordinary Evidence of EU Geology”. To understand the full context of this discussion, be sure to view these materials.

Recent field examination of triangular buttress features on monoclines in the Four Corners region of the southwest U.S. provides some confirming evidence for the theory, some conflicting evidence, as well as new information to expand theories for Electric Earth geology.

four-corners-locator2
A = Four Corners, B = Site of Investigation – Google Earth Image

Field Notes from Four Corners

“Four Corners” is a nickname for the location in North America where the borders of Arizona, Utah, New Mexico and Colorado meet. It is a region of splendid beauty, history, mystery and geology.

It is among the most ancient regions known to have been occupied by the earliest humans in North America. Blackened rock is decorated with archaic petroglyphs and pictographs. “Squatter Man”  appears on random canyon walls.

It’s a region that suffered catastrophe, causing inhabitants to suddenly flee in a mass diaspora seven centuries ago. Cliff houses abandoned by the Anasazi Pueblo people haunt this region; derelict and silent in deep canyon clefts.

Through it flows the San Juan River, from headwaters at the Continental Divide immediately east of the region, to confluence with the Colorado River immediately to the west, before their joined flow cuts into Lake Powell and the Grand Canyon.

Yet the region is arid, desert plateau over 1500 meters above sea level. The geologic enigma of Monument Valley lies at its core. On a satellite image, it stands out like a bulls-eye on the landscape of North America.

Near the Navajo town of Kayenta, Arizona is the southern end of a monocline – a curvalinear ridge nearly 100 km long, that extends from Kayenta east, and then north to Horse Mountain in Utah. It’s named Comb Ridge. It borders Monument Valley on the south, and east, and is sliced by the San Juan River at the mid-point. A field examination of Comb Ridge was recently performed and is the focus of this article. As we will discover, it holds answers about the form of our planet.

Pressure Ridge (AKA, The Monocline)

Below is an image of Comb Ridge near the town of Kayenta, Arizona. It was investigated on August 13, and a subsequent investigation was made the following week of another monocline ridge, the San Rafael Reef in Utah, to compare and confirm consistency of findings. A report on the findings of the San Rafael investigation is forthcoming, however some photographic evidence from the San Rafael Reef is used in this article to illustrate findings consistent to both monoclines.

kayenta12
The Kayenta Monocline (pin denotes area investigated) – Google Earth image.
dsci0467
San Rafael Reef, Utah – photo by author.

By mainstream reasoning, these are sandstone sediments that drape over the scarp of a deep basement fault, where one side of the fault lifts higher than the other leaving a linear ridge on the landscape. These ridges are often called hogbacks. They can be a linear hill stretching a few hundred meters, elevated a dozen meters in relief , or they can be a curvalinear mountain ranging more than a hundred kilometers long and a thousand meters in elevation.

Their most common characteristic is they display the layers of sediment exposed on one side along the steep and often jagged high end, and a shallower sloped and generally planar faced opposite side – a ski slope is the term often used.

kayenta3
Layered sandstone tilted to a consistent angle is characteristic of the monocline. Google Earth image.

They also display particular features that betray their true origin. Namely, triangular buttresses.

kayenta2
Triangular Buttresses near Kayenta, Arizona. Google Earth image.

Arcing current discharge will create a supersonic shock wave. A shock wave travels as a pressure wave though a medium until it hits a medium of higher density, and then it reflects. Shock reflections create standing waves in the general shape of triangles and diamonds, with other variables contributing additional effects that can modify the form.

bulletreflectecshock
Reflected shock waves from a bullet impact produce triangular wave forms in higher density material surrounding the impact.

These are not created in the same fashion as described in Arc Blast, however, at least not exactly the same. They are still created by supersonic shock waves and winds, only the cause of the winds is not an atmospheric arc, as described for an arc blast.

On-site examination of the monocline reveals no mountain core beneath, or behind the layers forming the buttresses as expected from an arc blast event. By all appearance, they are a windblown pressure ridge, against which the buttresses formed.

Mainstream theory holds that triangular buttresses on the monocline are either formed by seismic waves, or water erosion.

The seismic theory is nonsense, since the theory requires the triangles to form by shifting fault blocks and this simply does not comport with observation. That would create discontinuities and broken debris between shifted blocks and they aren’t present. The buttresses are monolithic layers and sheets without significant displacement at faults and cracks.

Seismic forces had nothing to do with forming them. Close examination of the hills and surroundings allows us to address water erosion more fully, and find evidence for a theory of electrical formation. Let’s begin with the survey.

Examining The Buttresses

dsci0075
Area of investigation near Kayenta, Arizona. Photo by author.
dsci0049
Face view of the Kayenta buttress examined. Kayenta, Arizona – photo by author.

The dip of the stratified layers at the place of investigation was approximately 20 degrees, although other areas displayed both steeper and shallower angles of repose. The strike orientation (from center of triangles base to apex) was north – northwest. The hogback bends northward, so the strike near the north end is due west.

Water Erosion

Definite signs of water erosion were found on exposed sandstone walls in the creek that ran between the base of the buttresses. Evidence of significant flow in the wash showed to a height of about five meters above the creek bed.

dsci0044
Water worn sandstone in the wash at the base of the buttress – the only significant water erosion found. Kayenta, Arizona – photo by author.

Here is found the smooth, rounded, water worn rock one expects to see as the result of water erosion. Creeks flow between buttresses in this fashion infrequently, so are not the cause of their consistent triangular formation. This creek was used as an access to traverse through the monocline.

Elsewhere, water erosion was not evident other than superficial surface erosion and discolorations. Following are several examples that dispute water erosion as the mechanism that formed the triangles.

Wind Blown Rock

The edges of layers show the fineness of strata. Moisture may have caused clay to swell, contributing to the weathering, but smoothed edges from flowing water is not evident.

dsci0058
Finely layered, weathered sandstone on the uppermost layer. Kayenta, Arizona – photo by author.
dsci0052
A thirsty investigator finds disappointment – where is the water? No evidence here. Kayenta, Arizona, photo by author.
dsci0459
Apex of the buttress in the background is loosely consolidated, and should be easily carved by water, yet shows no evidence of water erosion. The underlying strata forms an uneven surface of harder rock with contours that could not physically produce a triangular shape by water erosion on the buttress below.
dsci0444
The apex of the harmonic buttress is loosely consolidated and displays no evidence of shaping by water erosion. San Rafael – photo by author.
dsci0435
Note the triangular definition of the highest peaks where the red and white banded layers appear – there is no watershed above to provide water for erosion, yet they are triangular buttresses. Also note, the lower harmonic wave forms are near perfect triangular layers over a chaotically channeled layer of rock – is there any plausibility to the notion that water, randomly flowing down these tortured channels, could form dozens of triangular buttresses in a coherent harmonic distribution that repeats in fractal form for miles? San Rafael – photo by author.
dsci0420
Supersonic shock and wind is the only means of forming consistent repetition of harmonic wave forms. Mainstream theory of water erosion cannot do this (if you think it can, please reference some empirical evidence). San Rafael, Utah – photo by author

Layered Strata

Strata are sandwiched in thin, straight, even layers, as well as monolithic concretions.

dsci0525
A meter thick layer separates two monolithic layers. The layers’ edge has a molded wavy appearance, but the thin layer makes a straight line if viewed edge-on. San Rafael, Utah – photo by author.

The San Rafael Reef displays mixed bands of what appears to be white Wingate Sandstone of Triassic age, and red Navajo Sandstone of Jurassic age. How they mixed in alternating bands on triangular Buttresses is best explained by supersonic winds.

dsci0530
White layers of Wingate Sandstone streak through layers of red Navajo Sandstone. What caused them to mix like this?. San Rafael, Utah – photo by author.
dsci0537
Loosely consolidated dirt and rock is sandwiched between fine, hard sandstone. San Rafael, Utah – photo by author.

Some layers are loosely consolidated sand and dirt in a mixed matrix including chunks of rock. Some are finely grained hard rock.

Still others are hard, flat and ruler straight layers of such thin, even depth, they appear as if electroplated onto the layer below. These layers are four to twelve inches of extremely hard rock, flat surfaced and scored with rectilinear fractures such that it resembles a brick wall. The rock even looks like baked brick, with smooth planar surfaces.

dsci0453
“Brick walls like this were observed as the outer layer, as shown here, and as intermediate layers on buttresses. San Rafael, Utah, photo by author.

Also in the photo above, small triangular red discolorations appear in harmonic reflection across the base of the “brick wall” at about knee height, as if spray painted on – they can barely be discerned in the lower right.

Some layers display plastic deformation, as if molten, or hot and plastic when deposited. Typically seen composed of fine grained, tightly packed, homogeneous, hardened sandstone.

kayenta4
Visual evidence of fluid plasticity when deposited – apex of the top layer droops over the preceding layers. Note the narrow gray pressure ridge alongside the road behind the monocline was also layered there by winds. Kayenta – Photo by author.
dsci0046
The outer edge of the top layer displays an upward curl in places, indicative of plastic deformation, or boundary layer wind effects during deposition. Note the rough edged breccia on the lower layer shows no path, or effects from water erosion. Kayenta, Arizona – photo by author.

Shock Fractures

Striations and fractures appear throughout the buttresses. Typically they form at the same angle as the triangle, normal to it, or in checkerboard fashion as shown in the picture below, consistent with shock effects. Checkerboards appear in hardened strata that may have shrunk while cooling, creating a pillowing effect that widens striations at the surface. Water has superficially eroded striations vertical with respect to the hill, but horizontal striations are straight and clean.

oshiprock4
Surface fractures appear in diagonal and rectilinear lines consistent with dissipating shock reflections.
dsci0064
Deep parallel cuts are consistent with expanding shock waves. Kayenta – photo by author.

An Unexpected Find – Dikes

Facing the windward side of Comb Ridge is a vast windswept plain that drops into a river valley running parallel to the ridge. The plain is nearly featureless, except for the appearance of linear dikes radiating away from the ridge towards the river. The dikes are of a dark brown sandstone that resembles the Chinle Formation of Triassic sediments. The Chinle displays this amorphous, dark sandstone, that looks like petrified, boiled mud, throughout the southern Colorado Plateau.

dsci0086
Dikes on plains south of monocline. Kayenta, Arizona – photo by author.
dsci0085
Dikes aren’t straight. They offset, curve, wave and lean. Kayenta, Arizona – photo by author.
dsci0078
Visibly similar to Chinle Formation (unconfirmed). This is about twenty feet tall. See the hole? Kayenta, Arizona – photo by author.

The appearance of Dikes, their location and orientation, are curious for mainstream interpretation, given that similar dikes in the region are attributed to volcanic action. Near the meeting point of the four corner States juts Shiprock mountain. It has dikes emanating from it in a “Y” formation (or “wye” – hint, hint). How do the dikes of Shiprock relate to dikes formed at a monocline?

sr2
Shiprock from overhead showing radial dike “Y” pattern.

Situational Awareness

The Comb Ridge dikes visible at the surface are highlighted in the image below. It is apparent the dikes are related to the buttresses. One might conclude these are shock induced features, given their relation to shock induced triangular buttresses. They radiate at angles consistent with the angle of the buttresses and appear to terminate at the ridge itself. Other curious features can be found along the dikes.

kayenta-dikes-2
Blue lines show dikes readily visible at the surface. It’s apparent they radiate from the monocline.

Future articles will further explore the Kayenta monocline, the dikes and the Four Corners region in general. This will include examination of fulgarite and fulgamite evidence, wind pattern evidence from the orientation of pressure ridges and buttresses, and the cause of winds and other forces that formed the landscape.

Electric Earth Field Expedition 2016

A report on the 2016 expedition to Utah

Sacramento Leo, Southern Comfort Leo, Smooth-in-the-Groove Leo and Geology Leo – dragon hunters armed with compasses, four-wheel drives and field books to confirm that myth is actually fact.  I’m Desert Rat Leo, with my dog – Rat Dog Leo.

The purpose of the expedition was to find evidence about mountains and the physics of their creation coherent with the theory of Electric Universe. Not an easy task, but the theories are our own, which allows some flexibility – not in the science, of course, but in the methods of discovery.

We were using an entirely unconventional method called ‘Looking’. It’s a practice out of favor in academia. Most scientists now use computers to mimic reality – modelling reality to understand it. Like studying clay sculpture of people to understand life – it looks right, but doesn’t say much about the human heart. We took the approach of actually looking.

The trip began for Rat and I two days early. One day, so I could stay the night in Flagstaff and break-up the drive. Another day because I didn’t look at the calendar. I’m more attuned to phase of the moon than day of the week. It was coming up full, so I had to go.

Actually, leaving early allowed independent investigation of a fascinating land form near Kayenta, Arizona, called Comb Ridge.

dsci0080
Comb Ridge stretches east behind the beer can.

Comb Ridge is a smaller version of Capitol Reef, the primary objective for the Utah expedition. A stop at Comb Ridge was like the trailer to a movie – a preview of things to come.

The Comb is known as a single-sided monocline. You can look-up the mainstream theory here, but it’s pretty boring. By my theory it’s a pressure ridge, made by searing supersonic winds and shock waves. The theory is called Arc Blast. It’s really hypothesis, not theory, but that word has too many syllables. Most people know what I mean – it’s a concept that still requires proof.

Arc Blast is the literal breath of the mythical dragon – one of the archetypes from mythology that describes hydra-headed serpents launching from the depths of the sea, exposing the basement of Earth, arcing across the land, and dragging a tsunami of ocean behind that flooded to the height of mountain tops.

Arc Blast is caused by electrical discharge – arcs of current – lightning bolts in other words. Only this is lightning from inside Earth. When Earth amps-up from an external cause, like a big comet, or Solar flare, current internal to Earth blast out. The havoc that follows makes weather like Jupiter’s, with winds and lightning of enormous proportion.

Comb Ridge is a perfect example of an arc blast feature, because it exhibits triangular buttresses. These I contend can only be explained by supersonic winds and sonic shock waves. Mainstream theorizes these triangular forms are made by water erosion, which is entirely inadequate, and I can show that.

The reason is coherency in the forms. Their explanations lack it. Mine don’t. Examining Comb Ridge gave confidence to my claim.

It’s also easily accessible. A graded road runs behind the ridge and cuts through a canyon between buttresses. Rat Dog and I parked the Rover in the sandy wash, and simply climbed up. They lay at a shallow angle of about 20 degrees.

dsci0052

Structurally, everything we examined fit our theory. The buttresses are layered sandstone, no evidence water erosion created the shape of the triangles, and every indication they were deposited by winds.

But we also found things I hadn’t expected.

U.S. Route 163 passes through Comb Ridge, north into Monument Valley. As the road falls away from the Ridge, there is a stark, ugly blister on the land. It’s called Agathla Peak, and pokes 1,500 feet out of the desert floor. It’s dark brown, to black, like it’s made of burnt mud.

dsci0097

It’s where a huge lightning bolt struck, and left this raised blister. Using the preferred scientific instrument, our eyes, Rat and I detected lots of them in the area.

These pinnacles are considered by convention to be diatreme of ancient volcanoes. A plug of magma that stuck in the volcano’s throat, now exposed by time and erosion. The mainstream theory requires all of the surrounding land to have eroded away, leaving these ‘volcanic plugs’ behind.

But how severe erosive forces, capable of scouring away thousands of feet of land, could leave behind these crumbling chunks of sandstone is a bit perplexing to me.

Another feature of these pinnacles are dikes – walls of crumbling, darkened material called minette, also believed to be formed by volcanic process. But minette is like sandstone that has been altered electrically. It’s not like what spews from volcanoes at all.

Rat Dog and I found the same kind of dikes embedded in the buttresses, and radiating across the desert plains. They are too unconsolidated and crumbly to withstand forces that washed everything around them away. It seems more likely they are the remains of electrically charged shock waves from the same lightning that created the pinnacles.

dsci0085
Dikes angle across the plains in front (south) of Comb Ridge.
kayenta-dikes-1
Dikes (some are highlighted) radiate from Comb Ridge. Dikes align with the edges and orientation of triangular buttresses, radiating towards the river. Do you see coherency? Geologists think water erosion made the triangular buttresses. But how did water make these dikes – they are supposed to be caused by volcanic process. The black pinnacle due north of Kayenta is Agathla Peak. It’s a cluster of lightning strikes.

Having collected this key intelligence, Rat was hot and needed a nap. Of course, she took my lap, which meant I wore a hot dog in my lap. The temperature on the Comb was around 100ºF.

We drove on through Monument Valley. The place is is astonishing. Many trips back are in order, but on this day we rushed through on our way to Moab. We needed to set camp before dark.

Moab is a pretty patch of green in Canyon Country, where tributary creeks feed the Colorado. We gassed the Rover, ate and restocked the coolers with ice. Then ventured along the river to the campsite where the other Leo’s intended to meet us. That campsite was full. So was the next. And the next. And the next.

2016-08-14-14-33-081Down river we drove, surveying each campsite along the way. Here, the river cuts through a deep walled chasm favored by rock climbers. So the camps were full of these spider people; a strange, underfed and insular cult, festooned with colorful webbing.

Rat Dog felt it was best to keep our distance from the strange beings. Finally, we came to the last campsite available. It was empty.

We took the finest, shady spot at the bank of the river. While I unloaded gear, pitched the tent and collected firewood, Rat Dog sniffed flowers.

She didn’t sniff flowers for long – she wandered away instead. I hated to leash her since there was no-one else around, but couldn’t keep my eyes on her either. She seemed reluctant to stay in camp. The reason became apparent when I pulled branches from a pile of driftwood by the river-bank. Clouds of mosquitoes billowed out.

And so began a relentless night of misery. The Rat found mosquitoes in the flowers. Her hair sprouted clumps where bites raised her skin. She looked pitiful in a funny way, but I was alarmed at how many bites she had. She’s not a big dog and can’t take much poison. So, I zipped her inside the tent.

Meanwhile, the mosquitoes began to consume me. Constant movement was the only relief. I found if I moved fast enough to generate wind, I could outrun them. So I ran around, grabbing sticks and branches for the fire. Every piece of wood I picked-up swarmed more mosquitoes.

I frantically lit the fire to get smoke in the air. It was the only form of repellent available. I’m not used to dealing with mosquitoes because I live in a dry region. I don’t use bug repellent on my skin either. I had to resort to the only other form of relief at my disposal. A bottle of vodka.

2016-08-14-20-11-52I watched the sun angle below canyon walls, wondering how long until it cooled inside the tent to be bearable. I paced back and forth in smoke to foil the mosquitoes, my skin cooking from fire, my insides cooking in vodka, and fever in my brain from both.

When I bent over to tend the fire, mosquitoes attacked my backside. They bit through the seat of my pants. I ate naked crackers for dinner with vodka. It was too hot for cheese. As soon as the temperature dipped I joined Rat in the tent.

When morning sun steamed me awake, a dozen of the insolent bugs lounged on the tent walls. Fat with our blood, they were too sluggish to escape my wrath. I turned them into bloody blotches, and then regretted the stains.

I left Rat sleeping while packing everything, none of which I used. Then collected her and the tent, let her pee, and left for Moab to find coffee.

dscf2097

Once mental cognizance was reestablished with a large, dark roast, the Rat and I took stock. There was no way we were camping along the river again. I had to break down and buy a map.

This was a smart move. We’d been going solely on instinct, as dragon hunters are wont to do, eschewing navigational aides. I noted several campsites high on Dead Horse Mesa, between the Green and Colorado Rivers.

The Mesa had no mosquitoes, and was also out of the oppressive, brooding canyon. Here, there was big sky, clouds and a breeze. It’s called Dead Horse, because some dumb-ass rustlers thought the narrow tip of the Mesa would make a good corral to capture a stolen herd. I’ll let you figure out the rest.

W chose a campsite with trees and pitched the tent and a surplus parachute for extra shade. I strung it between Junipers, and when the wind blew right, it billowed and made an awesome clam shell awning.

The Leo’s arrived early afternoon. Finally, someone to talk with besides Rat. Tents went up, beers came out, along with chairs, ice chests and gadgets. There was also one luxurious, padded cot. I noticed the Rat eyeing it jealously. So did I. “Don’t you dare!” I said, and I gave her a look that meant business.

It belonged to Geology Leo. He laid on it immediately and began snoring, and that’s where he stayed for the rest of the trip.

The rest of us sat at the fire, talking and drinking beer. It was fun and we soon succumbed to disorientation, unbalance and expansive creativity. It wasn’t long before, one by one, they all drifted away to nap. Envy towards Geology Leo, snoring away on that damn cot began to burn inside, so I sat and grumbled to myself.

A couple things of note occurred then. We had our first wildlife encounter as a group. Rat and I met the mosquitoes, of course – my butt still itched from that. But this ‘National Geographic’ moment was more engaging. A fox approached Smooth-in-the-Groove while he napped on the ground, and sniffed his face. It was cute, in spite of the risk of fleas and rabies.

Then the camp host paid a visit and berated us for pitching tents, leaving dogs off-leash, and parking vehicles in the wrong places. Once we made adjustment according to orders, however, he relaxed and talked about the fox. Apparently it was a little rascal who stole campers clothes and food on a regular basis.

The other thing of note were two Italian girls camped across the road. The Rat made first contact. She trotted away to meet them first chance she got. She’s not overly fond of people in general, but she trusts other women.

2016-08-16-09-49-22
The Italians came to say Ciao to the chow. The Rat screams in protest.

The young ladies were from Italy, on a cross country trip through National Parks. I had no intention of bothering them, but Rat didn’t give me a choice. The girls immediately began cooing and fawning over her, so she jumped in their car and sat on the comfy seat. I had to get her back.

Smoothy immediately joined us. He wanted to flirt with the girls. So, while I mentally stumbled trying to communicate, he went-off speaking fluent Italian. This left me standing with my thumb up my butt while they conversed.

I extracted Rat from their car and threw her in the tent. She looked at me with daggers the rest of the night. I know she’d have abandoned me for those girls if I let her.

The next day the wind changed, causing the parachute awning to flap mercilessly, knocking off hats and slapping the unwary. The breeze also brought scent of the toilet to us.

1471452389657
This dragon tried to eat the campsite in Goblin State Park.

I hadn’t noticed any odor when I picked the campsite. But something was different today. Not just wind direction, either. The chemical balance was off in the toilets. It smelled like shit.

We moved in slow modality all morning, shuffling about sipping instant coffee in the smelly miasma. The Italian ladies came and shared granola bars. They brought one for each of us (two for Rat) and shared their travel stories while we munched. They were very charming with their accents and animated story-telling. They spoke better English than we could at that moment, so we just listened.

Around Noon, we finally got into the Rover and Southern Comfort’s jeep for some geology field work. What follows is actual field work in action:

Desert Rat Leo, September, 2016.

Arc Blast – Part Three

Re-posted courtesy of Thunderbolts.info

In Part One of this series, we looked at how arc blast creates a mountain. We examined triangular buttresses on mountainsides and how they conform precisely with the characteristics of reflected shock waves. In particular, we looked at layering, compression and expansion of the wave-forms.

In Part Two we looked at evidence of harmonics, wave-form instabilities and boundary layer effects that are imprinted on the landscape.

In this article, we’ll take a closer look at layering and electromagnetic influences.

Electromagnetic Effects…

The sock waves are energized with current. The shock wave is a highly stressed region – a dramatic shear zone of pressure, density and temperature the ionized winds can’t penetrate. The shock wave itself is a conduit for current.

Current coursing through thin shock waves molds the electromagnetic fields in the coherent form of the reflected shock and sorts material according to its dielectric properties. The stratified layers of triangular buttresses are segregated by mineral composition. An current in the shock wave necessarily has a magnetic field surrounding it.

LayersarcblastLayers1arcblast7Annotatedlayerturkey

Blowouts…Another dramatic signature of an electrical nature is a feature we’ll call a blowout. Blowout occurs when the arcing current makes direct contact with the ground.The arc flash follows the most conductive path available. It travels in the ionized atmosphere, especially in arid regions where soils are dry and non-conductive compared to the ionized atmosphere above ground. When a conductive surface feature is available the arc will fork to ground.The conductive feature may be a mineral deposit, or water in a stream, aquifer or wetland. The result is a crater that blasts away a portion of the mountain being formed. The images below show a blowouts in the center of a mountain. It is apparent the crater significantly modified the form of the mountain.

arcblast2BlowoutmexBlowoutmex3300px-Maximum_turning_angle

Expansion Fans…The images to follow are from a complex formation of astroblemes in Iran. They are on the outside, or convex bend in a large mountain arc.One unusual crater shows shock effects as the apparent arc trajectory changes. The feature annotated is an example of an expansion fan, which is a set of reflected waves that occur on the outside of a bend (convex) when the source of the shock makes a change in direction. The fanning shock waves have produced linear hills that radiate from the bend.

aexpfaniran1aexpfaniran2aexpfaniran3aexpfaniran4aexpfaniran5aexpfaniran6aexpfaniran7aexpfaniran8aexpfaniran9

Ejecta and Ablation Zones…Material ablated from the blast forms layered hills and pressure ridges on the surrounding area. Layering indicates material was blown away from the blast, instead of being drawn toward it by the suction of the mushroom cloud. Evidence of high speed winds is seen where they form fingers of conical flow, dunes and pressure ridges.

harmandpressablationtongue2Mt. Khvoshkuh30aMt. Khvoshkuh31aannotatedejecta2

Summary…Let’s recap what we have seen:

  1. Triangular buttresses form on the sides of mountains in the shape of reflected supersonic shock waves,
  2. They are layered onto the mountain, so they are not caused by seismic waves,
  3. They are not layered sediments from an ancient beach, or waterway since the sharply angled triangles are a consistent feature around the world and do not conform to any motion of random water waves,
  4. They are formed in all types of rock, including granite, so they are not formed by eons of normal winds,
  5. The triangular wave-forms exhibit compression and expansion from superimposed longitudinal and transverse waves,
  6. The triangular wave forms exhibit harmonic repetition consistent with reflected shock waves,
  7. The triangular wave-forms exhibit super-positioning and cancellation under compression consistent with reflected shock waves,
  8. The triangular wave-forms are parallel to the primary shock pattern, consistent with reflected shock waves and perpendicular to the wind direction, consistent with supersonic winds created by a shock wave,
  9. The triangular wave-forms exhibit less energy and more transient effects on softer substrates, and higher energy and sharper, more defined angles on hard substrates,
  10. Triangular wave-forms exhibit transient reflections, normal shocks and features of density variation consistent with supersonic reflected shock waves,
  11. The blast zones show concentric rings of pressure ridges, layered in the direction of the winds,
  12. The winds within the blast zone are directed normal to the central mountain, or  crater (outward blown winds), as indicated by surface layering on pressure ridges and buttresses,
  13. Boundary layer features of reflected waves can be found in the substrate of the blast zone, as seen in the road cut in Iran,
  14. Land surrounding the blast zone is blanketed with ejecta that exhibits flow patterns from high speed winds.

This concludes the Arc Blast series of articles on reflected shock waves and their significance. Future articles will examine more evidence for the effects of arc flash on the landscape:

  • The ‘rooster tail’ and how big mountains are built,
  • Following winds and how Kelvin-Hemholtz instability can modify a mountain ridge,
  • Complex mountain forms and mountain arcs,
  • The interrelation between volcanoes and mountains,
  • The connection between shock waves, fractals and Lichtenburg landscapes,
  • How rocks form,
  • The cause and nature of an arc flash,
  • Sub-sea canyons, trenches and rifts,
  • Examples from the archeological and mythological records of mankind.

What is proposed here can be verified. In fact, mountains are the most tangible evidence for the Electric Universe model available. The evidence is under our feet. There are already reams of geologic data waiting to be re-interpreted.

Geophysics, applied to evaluate geology as the consequence of electromagnetic and hydro-dynamic forces, will some day bear this out. You may even have the ability to bring that day closer. Your comments are invited.The End – Part Three.The proposed theory of arc flash and arc blast and their effects on the landscape are the sole ideas of the author, as a result of observation and deductive reasoning. Dr. Mark Boslough’s simulation of an air burst meteor provided significant insight into the mechanism of a shock wave. His simulation can be viewed on YouTube: Mark Boslough.

Arc Blast – Part Two

Re-posted Courtesy of Thunderbolts.info

In “Arc Blast – Part One” we looked at how arc blast from current in the atmosphere could produce supersonic shock and wind effects that create a mountain. We examined triangular buttresses on mountainsides that exhibit the characteristic standing wave-form of a reflected shock wave. In particular, we looked at how they are layered perpendicular to the wind direction, and exhibit compression and expansion from superimposed longitudinal and transverse waves that came from a source above.

We now examine more, compelling evidence.


guitar_harmonic1

Harmonics…

The images below are color enhanced Schlieren photographs of reflected shock waves in a wind tunnel.Wind tunnels typically show supersonic flow between two surfaces. The initial shock reflects from both walls, creating two triangular wave-forms adjacent to each other. The diamond patterns that form between the triangles are often called ‘shock diamonds’.In the case where a supersonic shock wave is created in the air, it is unbounded above, so the only surface reflecting it is the ground, and it creates a row of triangles instead of two opposing rows.

Tricolor_collage_W2

The initial wind speed in the first frame (top left) is Mach 2. It shows the shock wave producing one and a half diamonds. The wind tunnel is charged with gas in a pressure vessel, so as the gas flow progresses, the pressure and mass flow decrease from the pressure vessel, lowering the Mach speed of the wind.

The subsequent frames shows instability in the shock waves as the winds slow. The wave-forms  compress and the angles of the primary and reflected waves grow less acute.Vertical shock waves form, called normal shocks, which travel through the triangles, distorting their shape where the normal wave crosses the reflected wave, causing more reflections. New smaller triangles form and replace the original standing wave. This is harmonic reflection of the primary shock wave.

In the final frame (bottom, right) the wind speed has slowed, the triangular wave-forms are smaller and higher frequency. There are seven shock diamonds where there were initially one and one half.This sequence of harmonic reflection as the energy of the shock wave dissipates is evident on the triangular buttresses stacked on the sides of mountains. As seen in the images below, triangles are stacked upon triangles in harmonic multiples as the successive layers of material were deposited by supersonic winds, tunneled by the reflected shock waves.The first image in this group is most instructive. In it, the lower-most layers of harmonic waveform can be seen to have begun to form at the outer edge of the preceding layer.

airan4airan6arcblastiranHarm4harmonics

Instability, Interference and Cancellation…supesonicboundarylayerdensityTransients in wind speed, Mach angle and multiple reflections create instabilities in the wave-forms. Unstable  waves segregate and fan away from each other under expansion, fragmenting the wave-forms.

Or they bunch together in compression, pressing waves against each other. Shock waves don’t cross, but fold against each other, like magnetic fields interfering.

As wave-fronts compress, the wave-form can be squeezed and cancelled-out. In this image of a mountain in Iran, three wave-forms compress, distorting into curves where the waves, pressed against each other, bend the center wave-form almost circular. In the following layers, the pinched wave has cancelled altogether and the surrounding wave-forms have joined, stretching wavelengths to close the gap.

astroiranharm6

A similar wave cancellation has occurred in the next image. Here the center wave-form is cancelled by neighboring wave-forms, and they have expanded to fill the wavelength. A diagonal shock line appears cutting the mountain where the cancellation occurs. It crosses in a step-wise fashion, a few layers at a time, causing it to zig-zag. Note the ruler straight shock lines that divide the adjacent triangular buttresses.

Asian 3

Complex Wave-forms…Complexity is found within the shock fronts, inside the triangles themselves, as pressure and density variations.

ssresonance

Note the density variations form a circular feature near the top of this Schlieren image. The same feature is on the distorted triangular buttress found in Northern Arizona, shown below.Also, note how the edges of the triangle draw in towards the circle, just as the waves near the top in the Schlieren image do. The three small buttresses below the hole show a striking similarity to the size and location as those on the wave-forms in the same position in the Schlieren image.

Holearizona

Here is another hole created in a triangular buttress. This one is in Iran.

holeiran

The Lambda Foot…

This road cut is in Iran and is sometimes described as the slip fault that created the ‘horst-graben’ or basin and range region where this is found.That isn’t the case. This slice in the ground was left by the primary, or incident shock (left side of the ‘V’) and its reflected shock (right side of the ‘V’).

roadcutgeology-1BW

This is the boundary region where the initial shock meets and reflects from the ground. The incident shock curves sharply downward, and the reflected shock is nearly straight.  Where the reflected shock and incident shock meet, there is a feature called the lambda foot.

w-22

Note, the incident shock curvature and the particular dip of the sedimentary layers within the ‘V’. They are similar to the angled transmitted shocks shown in the ‘V’ of the diagram. Here is another image with a broader view. In this view, the lambda foot is easier to discern.

RCGEOBW

Also, a feature not originally shown on the diagram, the cut in the center top of the ‘V’ which results from a shock that curves downward, normal to the expanding corner of the reflected shock, annotated in red on the diagram.

This shock feature is along the side of a hill that can be seen stacking in layers to the left. It should define the outer boundary of the initial shock wave. If so, it should form a ring around the mountain. A similar ‘V’ shaped cut should be found on the opposite side of the hill. If true, the incidence angles, and distance between this ‘V’ and the predicted ‘V’ on the opposite side, hold information about the height of the apex of the passing wave.

Conclusions…Harmonic repetition is undeniably evident on triangular buttresses – proof they resulted from a sonic shock event. It’s proof they were created in a single, coherent event, and could not possibly be the result of time and erosion.The other effects we’ve examined are particular to sonic shock waves, as well. In Part Three we’ll look into evidence for electromagnetic effects of the arc blast.

The End – Part Two.

Arc Blast – Part One

Re-posted Courtesy of Thunderbolts.info

One of the most compelling aspects of Electric Universe cosmology is that it is visually apparent. A person can see a Peratt column in a petroglyph and reasonably conclude that our ancestors viewed a different sky than we do.

Or look at a telescope image of DSCI0078planetary nebula and recognize the hourglass shape of plasma current contracting to form a star.

Or view the red-shifted quasars inside Halton Arp’s “unusual galaxies” and determine for yourself if they are really the distant objects we’re told by conventional astronomy.

In fact, through Electric Universe eyes, you can see that patterns in nature, from galactic to nuclear, are coherent, fractal, and electric.

The planets and moons of our own solar system provide some of the most accessible and compelling visual evidence of all. Hexagonal craters, rilles and the odd distribution of these features, often concentrated near the poles, or in one hemisphere, attest to an electrical formation. One can imagine the vortex of discharging plasma that carved them.

5080_mount_fitzroy_c
The central pillar of Mt. Fitzroy

Earth should also show electrical scarring – in an Electric Universe it has to be the case. But it’s not intuitively apparent.

Unlike the Moon, or Mercury, Earth doesn’t display a carpet of hexagonal craters. There are some craters we know that are ancient and eroded, but their formation remains controversial.

There does exist proof of electrical scarring on Earth, however, and it’s in abundance. You can say it’s staring us in the face. This article will discuss how to recognize it.

First however, recognize that what distinguishes Earth from a planet like Mercury, or the Moon, is its atmosphere and geomagnetic field. This changes the electrical character of the Earth entirely. It doesn’t respond like a bald, rocky planet in an electric current, drawing lightning bolts from a region of space that carries a different electrical potential.

Earth acts like a gas giant, integral to the circuitry, with current flowing through, as well as around it. But Earth’s current flows in a liquid plasma – the molten magma below the crust. In the event the system is energized, current discharges from within.

The evidence is in the extensive volcanism on Earth. Volcanoes straddle subduction zones at the edges of continental plates, rift zones and mid-ocean ridges. They betray the flow of current beneath the crust.

Surface evidence is in the mountains. Basin and range, mountain arcs, and mountain cordilleras are all proof of electrical discharge. To understand the visual evidence, however, requires looking beyond the simple concept of a lightning bolt from space. The reason is the Earth’s atmosphere.

is3cccWhen electrical discharge occurs in an atmosphere, it creates sonic-hydrodynamic effects. We experience the effect when we hear thunder – the sonic boom of a lighting bolt. It’s the sonic and hydrodynamic effects, in a dense, viscous atmosphere, that leave their mark on the landscape at the grandest scale.

In a previous article, “Surface Conductive Faults”, we discussed the concept of a surface conductive double layer providing a path for arc flash. The surface conductive path is the cloud layer, where we can see that ions collect to produce thunderstorms.

Imagine a lightning bolt of immense proportions, sheets of lightning, in fact, arcing horizontally in this region that is roughly five, to fifty thousand feet above the land. The focus of this article is the hydrodynamic effects of the resulting arc blast. Arc blast is the consequence of arc flash in a surface conductive current discharge.

Four Steps to Build a Mountain…

The following image (annotated by the author) from Los Alamos Laboratories shows a shock wave being created by a supersonic projectile passing over water. The colors display density; highest in the red, lowest in the blue. Purple is the baseline of the atmosphere. It provides a very good analogy for the way a mountain is built.

The result of the arcs passing is embossed on the land by shock waves that act almost precisely  as those made by the projectile.

The difference being  the shock wave is plowing land, not water, and it has the hyper-sonic velocity, heat and power of an arcing current – much more energy than a simple projectile.

AnnotatedBullet2

The bow shock is an anvil of many thousands of psi, at a temperature many times that of the sun, carrying charged electric fields. In a dense, viscous environment, fluid mechanics, shock effects and electromagnetism align in phase and frequency with the arc that creates them.

In Region 1, the bow shock vaporizes, and melts the ground, plowing an oblong crater.AnnotatedRM3Region 2 is a reflected shock wave blasting into the atmosphere, pushing an exploding cloud of vaporized debris into a Richtmeyer-Meshkov instability, more commonly known as a mushroom cloud.

The cloud is not shown in the projectile over water because that simulation did not involve the explosive effects of expanding gases heated instantaneously by an arc flash.The mushroom cloud rises behind the shock wave with a supersonic vacuum at its core. The updraft of expanding gases generates in-flowing ground winds that scream like banshees across the ablated surface of the blast zone, attaining supersonic speeds as they funnel to the core of the updraft, dragging clouds of molten rock and dust.

A simulation of such an event created by an air-burst meteor is portrayed in this video by Dr. Mark Boslough of Sandia Labs.

The ground winds are directed perpendicular to the primary shock wave. Keep this in mind, because it is very important evidence in the  geometry of mountains.

In Region 3, a low pressure updraft forms, like the rooster tail behind a speedboat. The rooster tail pulls ablated melt from the crater. It forms the core of the mountain.

In Region 4, multiple shock reflections form triangular wave-forms. Note, the reflected wave bounces from the surface. The base of the triangle forms on the surface that reflects it.

The multiple shock reflections in Region 4 are standing waves. Standing waves don’t travel. The wave-form stays in place with the energy coursing though it. Reflected waves multiply, like in a hall of mirrors, repeating harmonic wave-forms to the nth degree, until the energy of the shock dissipates.

Slide1The reflected shock waves are rigid and stable when the energy is high, creating a shock ‘envelop’ over the ablated land. The energy does not dissipate quickly, because the vacuum of the mushroom cloud above is punching a hole through the atmosphere, drawing supersonic winds through the shock envelope like a cosmic vacuum. This is a source of free energy to the shock wave that keeps it alive.

Shock waves are highly energetic. They are razor thin sheets of pure energy, entire tsunamis in a sheet of glass. Like steel plates animated with resonate energy that derives from the original bow shock.

The incoming ground winds funnel through triangular plenums formed by reflected shock waves. The entire envelop of reflected waves acts as a coherent entity, with structural stiffness, resonating with the vibrations of the parent shock and the supersonic winds screaming through it.

It rides on the surface of the land, spread across the entire impact zone of the bow shock, like a multi-manifold vacuum cleaner, hosed to a hole in the sky above.

The winds plaster the mountain core with layered triangular buttresses.

Slide1

Prest2

Supersonic Wind Effects…

Shock reflections form at 90 degrees to the path of the shock wave that made them, so they emanate radially from the impact as seen in the Schlieren image of a bullet impact.

bulletreflectecshock
Reflected shock waves from a bullet impactHence, the orientation of triangular wave-forms holds information on the path of the initial shock.

It also vectors the supersonic wind flow, which layers the buttress in place. Therefore, wind direction is perpendicular to the stratified layers of the buttress and can be determined.

Examination of the coherent orientation of triangular buttresses dispels any notion they were made by random influences of wind and rain over the eons. The non-random, radial orientation of wave-forms is, in fact, impossible to explain except as the result of a single shock event that produced winds unlike anything we experience today.

aRadialamexcraterainterruptmexawinddirection

When a shock wave dissipates, the inflow of winds doesn’t necessarily stop, but they slow down and are no longer constrained to the path formed by the shock fronts. The final layers of material deposited often lose coherence and exhibit sub-sonic flow patterns.

Mudflowa

The layered material on buttresses is deposited in a hot, molten state. Patterns of deposition display evidence of molten fluidity at the time they were made.

amexicomelted

Reflected Shock Waves…

Supersonic shock waves display particular behaviors that have been studied by aerospace engineers since the beginning of the jet age. These characteristics must be understood to design airplanes, missiles and rockets. We know a great deal about their behavior.

The angle that the initial shock wave makes is directly related to the Mach speed of the wave, so Mach_angleit is called the Mach angle. Hence, the Mach angle holds information on the speed of the shock wave that made it.

The triangular reflected wave form is an inevitability of supersonic flow. It forms when the initial shock wave hits a surface and reflects.

The reflected wave will have an equal, but opposite angle incident to the surface from the shock wave that made it, assuming the plane of the surface and trajectory of the wave front are parallel.

shockreflections22

When the incident angle between the shock trajectory and the reflecting surface change, more reflected waves are created in predictable ways. Hence, the reflected angle holds information on the trajectory of the shock wave that made it.

The amplitude and wavelength of the reflected waves diminish over time as the energy dissipates. Hence, reflected waves hold information on the energy of the event that made them.

The shock wave travels on a transverse carrier wave called the “propagating wave”. This vibrates the land, seismically, from the hammer blow of the shock wave.

The land will wavesreflects some of the shock and absorb some of the shock, as a function of its modulus of elasticity.

Hard rock will reflect better than sandstone, because the sandstone will absorb much more of the shock. Uneven surfaces will also modify the wave-form. This contributes to the variety of wave-forms we see.

ArcblastPakistanarcblastn. africa

Supersonic shock waves are longitudinal waves. Instead of vibrating up and down in a sinusoidal vibration, longitudinal waves compress and expand back and forth, like an accordian.

Longitudinal waves Transverse waves, like the propagating wave, travel up and down.

Transverse waves

The result is longitudinal and transverse waves super-positioning. Except inverted to the super-positioned wave shown below, with the fixed boundary above, fixed to the point in space the shock originated from, and wave motion amplified near the ground.

aAstromexico1AcblastAsiaArgentinaexpcontractArgentinaexpcontract2I-35

These wave-forms had to be created from above. A wave needs a surface – an interface – with a medium of higher density to reflect. Pure seismic waves shaking and rolling the ground from below are unbounded above. The atmosphere can’t reflect a seismic shock and create a reflected wave-form on a mountain side. The shock waves came from above.

Our ancestors had a name for them… Dragons.

Conclusions…

  1. Triangular buttresses form on the sides of mountains in the shape of reflected supersonic shock waves.
  2. They are layered onto the mountain, so they are not caused by seismic waves.
  3. They are layered perpendicular to the wind direction, consistent with supersonic winds created by shock waves.
  4. The triangular wave-forms are parallel to the primary shock pattern, consistent with reflected shock waves.
  5. The triangular wave-forms exhibit less energy and more transient effects on softer substrates; and higher energy, sharper angles on hard substrates.
  6. They are not layered sediments from an ancient beach, or waterway since triangles are a consistent feature around the world and do not conform to any motion of random water waves.
  7. They are formed in all types of rock, including granite, so they are not formed by eons of normal winds.
  8. The triangular wave-forms exhibit compression and expansion from superimposed longitudinal and transverse waves that came from a source above.

Triangular buttresses are an imprint of the Dragon’s teeth, formed by supersonic winds and shock waves caused by an arcing current in the atmosphere. In Part Two of Arc Blast, we’ll examine more evidence of the hydrodynamic forces that shaped our planet.

  1. Evidence of harmonic resonance,
  2. Effects of wave super-positioning and cancellation,
  3. Normal shocks and features of density variation and expansion fans,
  4. Boundary layer features of reflected waves in the substrate of the blast zone.

The End – Part One.

Arc Blast

DSCI0078One of the most compelling aspects of Electric Universe cosmology is that it is visually apparent. A person can see a Peratt column in a petroglyph and reasonably conclude that our ancestors viewed a different sky than we do.

Or look at a telescope image of planetary nebula and recognize the hourglass shape of plasma current contracting to form a star.

Or view the red-shifted quasars inside Halton Arp’s “unusual galaxies” and determine for yourself if they are really the distant objects we’re told by conventional astronomy.

In fact, through Electric Universe eyes, you can see that patterns in nature, from galactic to nuclear, are coherent, fractal, and electric.

The planets and moons of our own solar system provide some of the most accessible and compelling visual evidence of all. Hexagonal craters, rilles and the odd distribution of these features, often concentrated near the poles, or in one hemisphere, attest to an electrical formation. One can imagine the vortex of discharging plasma that carved them.

5080_mount_fitzroy_c
The central pillar of Mt. Fitzroy

Earth should also show electrical scarring – in an Electric Universe it has to be the case. But it’s not intuitively apparent.

Unlike the Moon, or Mercury, Earth doesn’t display a carpet of hexagonal craters. There are some craters we know that are ancient and eroded, but their formation remains controversial.

There does exist proof of electrical scarring on Earth, however, and it’s in abundance. You can say it’s staring us in the face. This article will discuss how to recognize it.

First however, recognize that what distinguishes Earth from a planet like Mercury, or the Moon, is its atmosphere and geomagnetic field. This changes the electrical character of the Earth entirely. It doesn’t respond like a bald, rocky planet in an electric current, drawing lightning bolts from a region of space that carries a different electrical potential.

Earth acts like a gas giant, integral to the circuitry, with current flowing through, as well as around it. But Earth’s current flows in a liquid plasma – the molten magma below the crust. In the event the system is energized, current discharges from within.

The evidence is in the extensive volcanism on Earth. Volcanoes straddle subduction zones at the edges of continental plates, rift zones and mid-ocean ridges. They betray the flow of current beneath the crust.

Surface evidence is in the mountains. Basin and range, mountain arcs, and mountain cordilleras are all proof of electrical discharge. To understand the visual evidence, however, requires looking beyond the simple concept of a lightning bolt from space. The reason is the Earth’s atmosphere.

is3cccWhen electrical discharge occurs in an atmosphere, it creates sonic-hydrodynamic effects. We experience the effect when we hear thunder – the sonic boom of a lighting bolt. It’s the sonic and hydrodynamic effects, in a dense, viscous atmosphere, that leave their mark on the landscape at the grandest scale.

In a previous article, “Surface Conductive Faults”, we discussed the concept of a surface conductive double layer providing a path for arc flash. The surface conductive path is the cloud layer, where we can see that ions collect to produce thunderstorms.

Imagine a lightning bolt of immense proportions, sheets of lightning, in fact, arcing horizontally in this region that is roughly five, to fifty thousand feet above the land. The focus of this article is the hydrodynamic effects of the resulting arc blast. Arc blast is the consequence of arc flash in a surface conductive current discharge.

Four Steps to Build a Mountain…

The following image (annotated by the author) from Los Alamos Laboratories shows a shock wave being created by a supersonic projectile passing over water. The colors display density; highest in the red, lowest in the blue. Purple is the baseline of the atmosphere. It provides a very good analogy for the way a mountain is built.

The result of the arcs passing is embossed on the land by shock waves that act almost precisely  as those made by the projectile.

The difference being  the shock wave is plowing land, not water, and it has the hyper-sonic velocity, heat and power of an arcing current – much more energy than a simple projectile.

AnnotatedBullet2The bow shock is an anvil of many thousands of psi, at a temperature many times that of the sun, carrying charged electric fields. In a dense, viscous environment, fluid mechanics, shock effects and electromagnetism align in phase and frequency with the arc that creates them.

In Region 1, the bow shock vaporizes, and melts the ground, plowing an oblong crater.

AnnotatedRM3Region 2 is a reflected shock wave blasting into the atmosphere, pushing an exploding cloud of vaporized debris into a Richtmeyer-Meshkov instability, more commonly known as a mushroom cloud.

The cloud is not shown in the projectile over water because that simulation did not involve the explosive effects of expanding gases heated instantaneously by an arc flash.

The mushroom cloud rises behind the shock wave with a supersonic vacuum at its core. The updraft of expanding gases generates in-flowing ground winds that scream like banshees across the ablated surface of the blast zone, attaining supersonic speeds as they funnel to the core of the updraft, dragging clouds of molten rock and dust. A simulation of such an event created by an air-burst meteor is portrayed in this video by Dr. Mark Boslough of Sandia Labs.

The ground winds are directed perpendicular to the primary shock wave. Keep this in mind, because it is very important evidence in the sacred geometry of mountains.

In Region 3, a low pressure updraft forms, like the rooster tail behind a speedboat. The rooster tail pulls ablated melt from the crater. It forms the core of the mountain.

In Region 4, multiple shock reflections form triangular wave-forms. Note, the reflected wave bounces from the surface. The base of the triangle forms on the surface that reflects it.

The multiple shock reflections in Region 4 are standing waves. Standing waves don’t travel. The wave-form stays in place with the energy coursing though it. Reflected waves multiply, like in a hall of mirrors, repeating harmonic wave-forms to the nth degree, until the energy of the shock dissipates.

Slide1The reflected shock waves are rigid and stable when the energy is high, creating a shock ‘envelop’ over the ablated land. The energy does not dissipate quickly, because the vacuum of the mushroom cloud above is punching a hole through the atmosphere to space, drawing supersonic winds through the shock envelope like a cosmic vacuum. This is a source of free energy to the shock wave that keeps it alive.

Shock waves are highly energetic. They are razor thin sheets of pure energy, entire tsunamis in a sheet of glass. Like steel plates animated with resonate energy that derives from the original bow shock.

The incoming ground winds funnel through triangular plenums formed by reflected shock waves. The entire envelop of reflected waves acts as a coherent entity, with structural stiffness, resonating with the vibrations of the parent shock and the supersonic winds screaming through it.

It rides on the surface of the land, spread across the entire impact zone of the bow shock, like a multi-manifold vacuum cleaner, hosed to a hole in the sky above.

The winds plaster the mountain core with layered triangular buttresses.

Slide1

Prest2

Supersonic Wind Effects…

bulletreflectecshock
Reflected shock waves from a bullet impact

Shock reflections form at 90 degrees to the path of the shock wave that made them, so they emanate radially from the impact as seen in the Schlieren image of a bullet impact.

Hence, the orientation of triangular wave-forms holds information on the path of the initial shock.

It also vectors the supersonic wind flow, which layers the buttress in place. Therefore, wind direction is perpendicular to the stratified layers of the buttress and can be determined.

Examination of the coherent orientation of triangular buttresses dispels any notion they were made by random influences of wind and rain over the eons. The non-random, radial orientation of wave-forms is, in fact, impossible to explain except as the result of a single shock event that produced winds unlike anything we experience today.

aRadialamexcraterainterruptmexawinddirection

When a shock wave dissipates, the inflow of winds doesn’t necessarily stop, but they slow down and are no longer constrained to the path formed by the shock fronts. The final layers of material deposited often lose coherence and exhibit sub-sonic flow patterns.

Mudflowa

The layered material on buttresses is deposited in a hot, molten state. Patterns of deposition display evidence of molten fluidity at the time they were made.

amexicomelted

Reflected Shock Waves…shockingbanner

reflctionsSupersonic shock waves display particular behaviors that have been studied by aerospace engineers since the beginning of the jet age. These characteristics must be understood to design airplanes, missiles and rockets. We know a great deal about their behavior.

The angle that the initial shock wave makes is directly related to the Mach speed of the wave, so Mach_angleit is called the Mach angle. Hence, the Mach angle holds information on the speed of the shock wave that made it.

The triangular reflected wave form is an inevitability of supersonic flow. It forms when the initial shock wave hits a surface and reflects.

The reflected wave will have an equal, but opposite angle incident to the surface from the shock wave that made it, assuming the plane of the surface and trajectory of the wave front are parallel.

shockreflections22When the incident angle between the shock trajectory and the reflecting surface change, more reflected waves are created in predictable ways. Hence, the reflected angle holds information on the trajectory of the shock wave that made it.

The amplitude and wavelength of the reflected waves diminish over time as the energy dissipates. Hence, reflected waves hold information on the energy of the event that made them.

wavesThe shock wave travels on a transverse carrier wave called the “propagating wave”. This vibrates the land, seismically, from the hammer blow of the shock wave. The land will reflect some of the shock and absorb some of the shock, as a function of its modulus of elasticity. Hard rock will reflect better than sandstone, because the sandstone will absorb much more of the shock. Uneven surfaces will also modify the wave-form. This contributes to the variety of wave-forms we see.

ArcblastPakistanarcblastn. africaSupersonic shock waves are longitudinal waves. Instead of vibrating up and down in a sinusoidal vibration, longitudinal waves compress and expand back and forth, like an accordian. Transverse waves, like the propagating wave, travel up and down.

The result is longitudinal and transverse waves super-positioning. Except inverted to the super-positioned wave shown below, with the fixed boundary above, fixed to the point in space the shock originated from, and wave motion amplified near the ground.

The static image in pink shows the standing waveform that results. Compression results in a higher frequency of small amplitude, short wavelengths, and expansion results in low frequency, high amplitude, long wavelengths. Triangular buttresses are the molded product of these shock waves, frozen in time as supersonic winds fused them in place on the mountain core.

Take a look:

aAstromexico1AcblastAsiaArgentinaexpcontractArgentinaexpcontract2I-35

These wave-forms had to be created from above. A wave needs a surface – an interface – with a medium of higher density to reflect. Pure seismic waves shaking and rolling the ground from below are unbounded above. The atmosphere can’t reflect a seismic shock and create a reflected wave-form on a mountain side. The shock waves came from above.

Our ancestors had a name for them… Dragons. We now examine more, compelling evidence.

Harmonics…

guitar_harmonic1

The images below are color enhanced Schlieren photographs of reflected shock waves in a wind tunnel.

Wind tunnels typically show supersonic flow between two surfaces. The initial shock reflects from both walls, creating two triangular wave-forms adjacent to each other. The diamond patterns that form between the triangles are often called ‘shock diamonds’.

In the case where a supersonic shock wave is created in the air, it is unbounded above, so the only surface reflecting it is the ground, and it creates a row of triangles instead of two opposing rows.

Tricolor_collage_W2The initial wind speed in the first frame (top left) is Mach 2. It shows the shock wave producing one and a half diamonds.

The wind tunnel is charged with gas in a pressure vessel, so as the gas flow progresses, the pressure and mass flow decrease from the pressure vessel, lowering the Mach speed of the wind.

The subsequent frames shows instability in the shock waves as the winds slow. The wave-forms  compress and the angles of the primary and reflected waves grow less acute.

Vertical shock waves form, called normal shocks, which travel through the triangles, distorting their shape where the normal wave crosses the reflected wave, causing more reflections. New smaller triangles form and replace the original standing wave. This is harmonic reflection of the primary shock wave.

In the final frame (bottom, right) the wind speed has slowed, the triangular wave-forms are smaller and higher frequency. There are seven shock diamonds where there were initially one and one half.

This sequence of harmonic reflection as the energy of the shock wave dissipates is evident on the triangular buttresses stacked on the sides of mountains. As seen in the images below, triangles are stacked upon triangles in harmonic multiples as the successive layers of material were deposited by supersonic winds, tunneled by the reflected shock waves.

The first image in this group is most instructive. In it, the lower-most layers of harmonic waveform can be seen to have begun to form at the outer edge of the preceding layer.

airan4airan6arcblastiranHarm4harmonics

Instability, Interference and Cancellation…

supesonicboundarylayerdensityTransients in wind speed, Mach angle and multiple reflections create instabilities in the wave-forms. Unstable  waves segregate and fan away from each other under expansion, fragmenting the wave-forms.

Or they bunch together in compression, pressing waves against each other. Shock waves don’t cross, but fold against each other, like magnetic fields interfering.

As wave-fronts compress, the wave-form can be squeezed and cancelled-out. In this image of a mountain in Iran, three wave-forms compress, distorting into curves where the waves, pressed against each other, bend the center wave-form almost circular. In the following layers, the pinched wave has cancelled altogether and the surrounding wave-forms have joined, stretching wavelengths to close the gap.

astroiranharm6A similar wave cancellation has occurred in the next image. Here the center wave-form is cancelled by neighboring wave-forms, and they have expanded to fill the wavelength. A diagonal shock line appears cutting the mountain where the cancellation occurs. It crosses in a step-wise fashion, a few layers at a time, causing it to zig-zag. Note the ruler straight shock lines that divide the adjacent triangular buttresses.

Asian 3

Complex Wave-forms…

Complexity is found within the shock fronts, inside the triangles themselves, as pressure and density variations.

ssresonance

Note the density variations form a circular feature near the top of this Schlieren image. The same feature is on the distorted triangular buttress found in Northern Arizona, shown below.

Also, note how the edges of the triangle draw in towards the circle, just as the waves near the top in the Schlieren image do. The three small buttresses below the hole show a striking similarity to the size and location as those on the wave-forms in the same position in the Schlieren image.

HolearizonaHere is another hole created in a triangular buttress. This one is in Iran.

holeiran

The Lambda Foot…

This road cut is in Iran and is sometimes described as the slip fault that created the ‘horst-graben’ or basin and range region where this is found.

That isn’t the case. This slice in the ground was left by the primary, or incident shock (left side of the ‘V’) and its reflected shock (right side of the ‘V’).

roadcutgeology-1BW

This is the boundary region where the initial shock meets and reflects from the ground. The incident shock curves sharply downward, and the reflected shock is nearly straight.  Where the reflected shock and incident shock meet, there is a feature called the lambda foot.

w-22

Note, the incident shock curvature and the particular dip of the sedimentary layers within the ‘V’. They are similar to the angled transmitted shocks shown in the ‘V’ of the diagram. Here is another image with a broader view. In this view, the lambda foot is easier to discern.

RCGEOBW

Also, a feature not originally shown on the diagram, the cut in the center top of the ‘V’ which results from a shock that curves downward, normal to the expanding corner of the reflected shock, annotated in red on the diagram.

This shock feature is along the side of a hill that can be seen stacking in layers to the left. It should define the outer boundary of the initial shock wave. If so, it should form a ring around the mountain. A similar ‘V’ shaped cut should be found on the opposite side of the hill. If true, the incidence angles, and distance between this ‘V’ and the predicted ‘V’ on the opposite side, hold information about the height of the apex of the passing wave.

Harmonic repetition is undeniably evident on triangular buttresses – proof they resulted from a sonic shock event. It’s proof they were created in a single, coherent event, and could not possibly be the result of time and erosion. Wave-form instabilities and boundary layer effects, like the lambda foot, imprinted on the landscape with such exact form, are beyond statistical happenstance.

Vectors…

Let’s be very clear on this, the wave-forms have no physical explanation in mainstream geology. The wave-form shapes, reflections, harmonics, expansions and contractions dictate a shock event that came from above.

A large comet, or asteroid that atomizes in an air burst could produce a plasma that sears the land, creating a crater, or astrobleme. But such an event would produce a linear, oval, or circular blast zone. Several fragmented bolides from a comet would produce a grouping of astroblemes, but they would necessarily be aligned to the comet’s trajectory.

Only an electrical arc has the ability to make turns in it’s  path. The following images demonstrate what I am showing is not the result of any type of rock from space. Future articles will discuss more on the nature of an arc flash.

Syria1
This one 100 mile long – Syria
Iranbends
Aimed in different directions – Iran
Iraq1
In Iraq, near Kirkuk
Iraq bends
They seem to turn bends – Iran

Astrosiberiacurveastroiranbendastrosiberia1

Electromagnetic Effects…

snapshot2
The Angry Photographer – magnetic fields

The stratified layers of triangular buttresses are often segregated by mineral composition. This is evidence of dielectric forces.

The arc flash that creates the mountain is essentially a lightning bolt, traveling in an ionized double layer in the atmosphere. An electric field will ionize particles. A magnetic field will sort them. An arc flash necessarily has an electromagnetic field surrounding it.

In fact, the arc is just the intense current flow of electrons at the core of the electromagnetic field. The field itself expands away from the core with the shock wave.

The sock waves are energized with current. The shock wave is a highly stressed region – a dramatic shear zone of pressure, density and temperature the ionized winds can’t penetrate. Ionized material flows with the winds in the low stress triangular region between the shock waves. The shock wave itself is a conduit for current. Current coursing through thin shock waves molds the electromagnetic fields in the coherent form of the reflected shock and sorts material according to its dielectric properties.

Layers

arcblastLayers1arcblast7Annotatedlayerturkey

Blowouts…

Another dramatic signature of an electrical nature is a feature we’ll call a blowout. Blowout occurs when the arcing current makes direct contact with the ground.

The arc flash follows the most conductive path available. It travels in the ionized atmosphere, especially in arid regions where soils are dry and non-conductive compared to the ionized atmosphere above ground. When a conductive surface feature is available the arc will fork to ground.

The conductive feature may be a mineral deposit, or water in a stream, aquifer or wetland. The result is a crater that blasts away a portion of the mountain being formed. The images below show a blowouts in the center of a mountain. It is apparent the crater significantly modified the form of the mountain.

arcblast2BlowoutmexBlowoutmex3

Expansion Fans…

300px-Maximum_turning_angleThe images to follow are from a complex formation of astroblemes in Iran. They are on the outside, or convex bend in a large mountain arc.

One unusual crater shows shock effects as the apparent arc trajectory changes. The feature annotated is an example of an expansion fan, which is a set of reflected waves that occur on the outside of a bend (convex) when the source of the shock makes a change in direction. The fanning shock waves have produced linear hills that radiate from the bend.

aexpfaniran1aexpfaniran2aexpfaniran3aexpfaniran4aexpfaniran5aexpfaniran6aexpfaniran7aexpfaniran8aexpfaniran9

Ejecta and Ablation Zones…

Material ablated from the blast forms layered hills and pressure ridges on the surrounding area. Layering indicates material was blown away from the blast, instead of being drawn toward it by the suction of the mushroom cloud. Evidence of high speed winds is seen where they form fingers of conical flow, dunes and pressure ridges.

harmandpressablationtongue2Mt. Khvoshkuh30aMt. Khvoshkuh31aannotatedejecta2

Summary…

What we have seen:

  1. Triangular buttresses form on the sides of mountains in the shape of reflected supersonic shock waves,
  2. They are layered onto the mountain, so they are not caused by seismic waves,
  3. They are not layered sediments from an ancient beach, or waterway since the sharply angled triangles are a consistent feature around the world and do not conform to any motion of random water waves,
  4. They are formed in all types of rock, including granite, so they are not formed by eons of normal winds,
  5. The triangular wave-forms exhibit compression and expansion from superimposed longitudinal and transverse waves,
  6. The triangular wave forms exhibit harmonic repetition consistent with reflected shock waves,
  7. The triangular wave-forms exhibit super-positioning and cancellation under compression consistent with reflected shock waves,
  8. The triangular wave-forms are parallel to the primary shock pattern, consistent with reflected shock waves and perpendicular to the wind direction, consistent with supersonic winds created by a shock wave,
  9. The triangular wave-forms exhibit less energy and more transient effects on softer substrates, and higher energy and sharper, more defined angles on hard substrates,
  10. Triangular wave-forms exhibit transient reflections, normal shocks and features of density variation consistent with supersonic reflected shock waves,
  11. The blast zones show concentric rings of pressure ridges, layered in the direction of the winds,
  12. The winds within the blast zone are directed normal to the central mountain, or  crater (outward blown winds), as indicated by surface layering on pressure ridges and buttresses,
  13. Boundary layer features of reflected waves can be found in the substrate of the blast zone, as seen in the road cut in Iran,
  14. Land surrounding the blast zone is blanketed with ejecta that exhibits flow patterns from high speed winds.

Future articles will examine more evidence for the effects of arc flash on the landscape:

  • The ‘rooster tail’ and how big mountains are built,
  • Following winds and how Kelvin-Hemholtz instability can modify a mountain ridge,
  • Complex mountain forms and mountain arcs,
  • The interrelation between volcanoes and mountains,
  • The connection between shock waves, fractals and Lichtenburg landscapes,
  • How rocks form,
  • The cause and nature of an arc flash,
  • Sub-sea canyons, trenches and rifts,
  • Examples from the archeological and mythological records of mankind.
What is proposed here can be verified. In fact, mountains are the most tangible evidence for the Electric Universe model available. The evidence is under our feet. There are already reams of geologic data waiting to be re-interpreted.

Geophysics, applied to evaluate geology as the consequence of electromagnetic and hydro-dynamic forces, will some day bear this out. You may even have the ability to bring that day closer. Your comments are invited.

The proposed theory of arc flash and arc blast and the effects on the landscape are the sole ideas of the author, as a result of observation, knowledge of shock and hydrodynamic effects, and simple deductive reasoning. The Electric Universe cosmological model provides the proper scientific context. Credit to Dr. Mark Boslough’s simulation of an air burst meteor, which provided significant insight into the mechanism of a shock wave. His simulation can be viewed on YouTube: Mark Boslough.

Surface Conductive Faults

arcs
Surface conductive currents

Reprinted courtesy of Thunderbolts.info

When high voltage electrical circuitry is sufficiently overloaded, or damaged, the current will seek alternative conductive paths to discharge to ground. It causes a dangerous event called an arc flash. Arc flash occurs when the current discharges in an arc through the atmosphere.

The result is explosive. Arc heat far exceeds the surface temperature of the Sun, in excess of 35,000 °F (19,400 °C). It’s hot enough to vaporize copper conductors, producing an expanding plasma with supersonic shock-wave pressures over 1000 psi. It releases radiation across the spectrum with such energy, it will vaporize, melt and ablate materials far from the arc itself. No contact is required with an arc burn. Damage occurs from the searing hot blast.

300px-Surface_Conductivity.svgAn arcing fault discharges to ground along the path of least resistance the same way a lightning bolt does. It is conducted through plasma formed by ionized air. Like a lightning bolt, it can be a single spark, or it can fork into a sheet of filaments that jump across gaps and craze across surfaces. The reason arcs tend to craze a surface has to do with a thing called surface conductivity.

Surface conductivity is a highly conductive path, where, in a charged environment, solids collect a layer of counter ions around them. The ions build-up near current flows and highly conductive materials, such as minerals and water, due to a phenomena called the Corona Effect. The layer of ionic concentration that results, surrounds the solid surface in a plasma double layer, providing a pathway for arcing currents.

Arcing, surface conductive currents can be shown to be a significant influence in Earth’s geology. But one must imagine an arc of truly colossal size…

Earth bears the scars of many surface conductive fault events. This article presents evidence that astroblemes caused by surface conductive faults are found around the world and are easily identified once it is understood how they form.

Kirkuk2

Astrobleme is a term for an ancient crater. Typically, craters are recognized as round depressions with raised rims and central peaks, commonly thought to be caused by meteorite impacts. Another type of astrobleme can be created by an air-burst meteor, when no rocky meteorite material actually impacts the ground. Instead, the meteor explodes in the upper atmosphere and its solid matter atomizes to form a bolide of plasma.

The plasma fireball carries the same speed, trajectory and energy as the original meteor, and essentially blow-torches the earth, creating the astrobleme. The “crater” in this case  is typically a teardrop, or butterfly blast zone of ablated material with a hogback hill down the center. The long hogback is analogous to the central peak in a round crater, and is thought to be formed by blast melt sucked inward by supersonic winds in a central updraft, like those in the ‘stem’ of a thermonuclear mushroom cloud. This central hill, or blister, defines the path of the plasma bolide as it streaks down at an oblique angle.

Meteor researchers, Dr. Mark Boslough, and team at Sandia National Laboratory, have simulated the effects of an air-burst meteor. Dr. Boslough is a noted expert on air-burst meteors, having researched events such as Chelyabinsk and Tunguska. At 21 seconds into this video, their simulation records the fireball’s downward blast of hot plasma, pushing a shock wave with heat and pressure that melts and ablates the ground below.

When the shock-wave rebounds violently upward, rising winds shear a column of updraft opposite to the downward blast. This supersonic updraft, Dr. Boslough theorizes, vacuums molten ejecta into the strike zone,  leaving a characteristic air-burst astrobleme – a linear hill with a sharply peaked ridge and distinctive triangular buttresses on the flanks, surrounded by an outwardly blasted zone of molten ejecta.

Asia 12The astrobleme characteristics, and in particular, the distinctive triangular buttress features that distinguish them, is explained by rogue geophisicist, “Craterhunter,” in this well written article, A Catastrophe of Comets.

The Sandia simulations show how a bolide, screaming into the atmosphere at a low angle, can blister a mountain in a searing instant. These mountains are seen all over the world. It is a bold and unconventional theory that realistically describes these types of hills much better than conventional geology.

The Surface Conductive Fault Theory…

The defining feature of the astrobleme is the repeating pattern of triangular buttresses that display harmonic repetition in shape, size and frequency. They flank linear hillsides all over the world, across slopes from near horizontal to vertical, and across rock types from sandstone sediments to schist and granite, yet they display the same harmonic patterns.

Harmonics are evident where multiple wave-forms are “nested” within larger wave-forms. When nesting waves occur in whole integer multiples of the larger wave-length they are nested within, it is a signature of harmonic resonance. The triangular buttresses appear to be harmonic waves similar to the patterns of reflected waves a linear resonator would make. No Uniformitarian process of random faulting, subsidence, uplift, slumping, and eons of wind and rain can account for harmonics.

Look close and try to count how many octaves are present on these mountain sides:

astroirancomplexastroiranharmastroiranharm2astroiranharm5astroutah2Harmiransweepamplitudemexicosweepmexsweepturkey

Triangular buttresses are a consequence of reflected shock waves – interference patterns of super-positioning pressure ridges formed by shock waves from the passing bolide. The chevron pattern of the reflected waves can be discerned in the atmosphere trailing the F-18 in the photo below. Shock waves travel in any medium; gas, liquid, or solid, as well as, electromagnetic fields and plasma. Supersonic ionic-winds, heavily clouded with molten rock and dust, form a plasma medium that is molded by the reflected waves. The shock waves fuse these buttresses to the mountain as it’s built by the supersonic in-flowing winds.

reflected shock

Conventional theory of seismic shock-waves can’t explain…

Earthquakes produce shock waves, too. So, there is a conventional theory of how triangular buttresses can be formed by surface waves from an earthquake. The “Love Wave” and similar models could theoretically cause faulting that produce a triangular buttress. It’s a simplistic model that is inadequate to explain the complexity of features actually seen in nature, however.

For one thing, the type of faulting predicted by surface waves is not evident on many buttress formations. Instead, they have a melted, layered appearance, as if consecutive layers of molten material were molded to the flanks of the mountains by supersonic winds – which is exactly what we theorize happens to form an astrobleme.

Seismic surface waves radiate from an earthquake. This suggests a surface wave would have to roll beneath the mountain to create triangular features. But triangular buttresses are found oriented radially from the center-line of the hill, indicating that is the direction of the shock wave’s source. Buttresses are found curving around the ends of hills and craters, vectored away from the local blast zone, not from a  rolling seismic surface wave.

Nor does any conventional theory explain the surrounding areas of ablated ejecta blown away from the astrobleme crater. Ejecta blankets also show the evidence of supersonic winds, displaying conical flow patterns oriented away from the blast zone.

Each of these features; triangular buttresses of layered melt, radially vectored buttresses, and surrounding regions of molten ejecta, are highlighted in the following Google Earth images:

AnnotatedlayerturkeyAnnotaded deposition utahutah4anootateddepositionutahAnnotatedsweepmexico1BacksweepmexicoAnnotatedsweep2mexAnnotated cratermexAnnotatedradial2mexicoAnnotatedradialAnnotated radial IranAnnotated radial siberiaannotatedejecta2Annotatedradial-iranannotateejectaAnnotatedejectaSweepejectairanAnnotatedejecta3sweepejectamex

Dr. Boslough’s work demonstrates how a plasma bolide can sear the Earth, leaving an astrobleme with these features. It falls short however, in providing a complete explanation. The idea they are created by meteors from space doesn’t hold-up. Surface conductive fault currents complete the picture of how these astroblemes were formed.

A rain of bolides from comet fragments, or an asteroid, will travel in a specific trajectory – that’s physics – they can’t land at odd angles to each other, or follow sinuous paths across hundreds of miles of terrain. Yet that is what is seen:

direction3directionarm12Syria1Direction2astraliranradil2astro7astrochileastroiranbendastrosiberia1Astrosiberiacurve

These scars are not produced by fragments of comets, or asteroids. Surface conductive fault currents made these blisters. In some cataclysmic geomagnetic event, Earth’s normal current discharge through the atmosphere – the constant flow of energy through hurricanes, thunderstorms, earthquakes and volcanoes – overloaded, and essentially, short circuited. Sheets of lightning and plasma bolides, arcing through surface conductive paths above the ground, left these blisters.

Untitled5
Ground level inflow carries material to form linear hills. Reflected shock waves mold harmonic patterns of triangular buttresses – A. D. Hall.

Unlike a meteor bolide, electrical current doesn’t fly straight, yet it has the extreme energy to create the same temperatures and pressures as a bolide created by an air-burst meteor from space.

As it arcs across the land it is drawn to conductive soils; minerals and moist regions, to skip, branch and gouge divots. Ionized material it carries fires-off as bolides that strike land and leave teardrop astroblemes.

Magnetic fields around the plasma current induce rotation along the horizontal axis of its flight, modifying the speed of the winds. This effect causes some hills to be pushed over, shallower on one side and steeper, with more distinct triangular buttresses on the other. It blows the ejecta blanket asymmetrically, and it may carve a valley longitudinally down the center of the hill. These are all features typically seen and are the result of violent electromagnetic, supersonic blast events.

arc3To understand more about how the Earth’s internal currents are induced by the electromagnetic environment of the solar system, see EU 2015 speakers Bruce Leybourne and Ben Davidson explain theories of our electromagnetic environment and the hot spots of current welling inside the Earth. Now imagine those currents amped-up until they short circuit and produce surface conductive faults. The consequences are apparent in the features of astroblemes. But astroblemes only scratch the surface in the story of surface conductive currents. Other startling evidence will be explored in future articles. Your questions, comments and ideas concerning how surface conductive faults can help re-define our understanding of geology are welcome.